1.一些基本符号 2.COST函数 ================Backpropagation Algorithm============= 1.要计算的东西 2.向前传递向量图,但为了计算上图的偏导,要用到后向传递算法 3.后向传递算法 4.小题目 ==============Backpropagation Intuition============== 1.前向计算与后向计算很类似 2.仅考虑一个例子,COST函数化简 3.倒着算theta   =======Implementation…
原文 http://blog.csdn.net/abcjennifer/article/details/7758797 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
9.1  代价函数 9.2  反向传播算法 9.3  反向传播算法的直观理解 9.4  实现注意:展开参数 9.5  梯度检验 9.6  随机初始化 9.7  综合起来 9.8  自主驾驶 9.1  代价函数 首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有 m 个,每个包含一组输入 x 和一组输出信号 y,L 表示神经网络层数, 表示每层的 neuron 个数,SL 表示输出层神经元个数 将神经网络的分类定义为两种情况:二类分类和多类分类, 二类分类:=1, y=0 or 1…
循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解.   循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Proce…
本章共两部分,这是第二部分: 第十四章--循环神经网络(Recurrent Neural Networks)(第一部分) 第十四章--循环神经网络(Recurrent Neural Networks)(第二部分) 14.4 深度RNN 堆叠多层cell是很常见的,如图14-12所示,这就是一个深度RNN. 图14-12 深度RNN(左),随时间展开(右) 在TensorFlow中实现深度RNN,需要创建多个cell并将它们堆叠到一个MultiRNNCell中.下面的代码创建了三个完全相同的cel…
原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解.   循环神经网…
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent Neural Networks叫做时间递归神经网络,与之对应的还有一个结构递归神经网络(recursive neural network).本文讨论的是前者. RNN是一种可以预测未来(在某种程度上)的神经网络,可以用来分析时间序列数据(比如分析股价,预测买入点和卖出点).在自动驾驶中,可以预测路线…
转自 http://blog.csdn.net/xingzhedai/article/details/53144126 更多参考:http://blog.csdn.net/mafeiyu80/article/details/51446558 http://blog.csdn.net/caimouse/article/details/70225998 http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/ RNN…
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
摘自:http://blog.csdn.net/heyongluoyao8/article/details/48636251 不同于传统的FNNs(Feed-forward Neural Networks,前向反馈神经网络),RNNs引入了定向循环,能够处理那些输入之间前后关联的问题.定向循环结构如下图所示:    该tutorial默认读者已经熟悉了基本的神经网络模型.如果不熟悉,可以点击:Implementing A Neural Network From Scratch进行学习. 什么是R…