https://www.cnblogs.com/wolfshining/p/7662453.html 斐波那契数列即著名的兔子数列:1.1.2.3.5.8.13.21.34.…… 数列特点:该数列从第三项开始,每个数的值为其前两个数之和,用python实现起来很简单: a=0 b=1 while b < 1000: print(b) a, b = b, a+b 输出结果: 这里 a, b = b, a+b 右边的表达式会在赋值变动之前执行,即先执行右边,比如第一次循环得到b-->1,a+b -…
斐波那契数列即著名的兔子数列:1.1.2.3.5.8.13.21.34.…… 数列特点:该数列从第三项开始,每个数的值为其前两个数之和,用python实现起来很简单: a=0 b=1 while b < 1000: print(b) a, b = b, a+b 输出结果: 这里 a, b = b, a+b 右边的表达式会在赋值变动之前执行,即先执行右边,比如第一次循环得到b-->1,a+b --> 0+1 然后再执行赋值 a,b =1,0+1,所以执行完这条后a=1,b=1 a=0 b=…
一.生成器(generator) 先来看看一个简单的菲波那切数列,出第一个和第二个外,任意一个数都是由前两个数相加得到的.如:0,1,1,2,3,5,8,13...... 输入斐波那契数列前N个数: def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 结果: >>> fib(100) 1 1 2 3 5 8 13 但是,要提高 fib 函数的可复用性,最好不要直接打印出数列…
斐波那契数列就是黄金分割数列 第一项加第二项等于第三项,以此类推 第二项加第三项等于第四项 代码如下 这一段代码实现fib(n)函数返回第n项,PrintFN(m,n,i)函数实现输出第i项斐波那契数列,输出在m到n之间的斐波那契数的数量 def fib(n) : x = 0 x1 = 1 x2 = 1 i = 2 while i <= n : i = i + 1 x =x1 + x2 x1 = x2 x2 =…