MongoDB整理笔记の增加节点】的更多相关文章

MongoDB Replica Sets 不仅提供高可用性的解决方案,它也同时提供负载均衡的解决方案,增减Replica Sets 节点在实际应用中非常普遍,例如当应用的读压力暴增时,3 台节点的环境已不能满足需求,那么就需要增加一些节点将压力平均分配一下.   两种方式:一是通过oplog增加节点,二是通过数据库快照和oplog来增加节点 通过oplog增加节点   1.配置并启动新节点,启用28013这个端口给新的节点 root@localhost ~]# mkdir -p /data/da…
当应用的压力小时,可以减少一些节点来减少硬件资源的成本:总之这是一个长期且持续的工作. 下面将刚刚添加的两个新节点28013 和28014 从复制集中去除掉,只需执行rs.remove 指令就可以了,具体如下: rs1:PRIMARY> rs.remove("localhost:28014") { "ok" : 1 } rs1:PRIMARY> rs.remove("localhost:28013") { "ok"…
MongoDB支持在多个机器中通过异步复制达到故障转移和实现冗余.多机器中同一时刻只有一台机器是用于写操作,正因为如此,MongoDB提供了数据一致性的保障.而担当primary角色的机器,可以把读的操作分发给slave. MongoDB高可用分两种:   Master-Slave 主从复制 只需要在某一个服务启动时加上–master 参数,而另一个服务加上–slave 与–source 参数,即可实现同步.MongoDB 的最新版本已不再推荐此方案. Replica Sets 复制集 Mono…
最近项目在做网站用户数据新访客统计,数据存储在MongoDB中,统计的数据其实也并不是很大,1000W上下,但是公司只配给我4G内存的电脑,让我程序跑起来气喘吁吁...很是疲惫不堪. 最常见的问题莫过于查询MongoDB内存溢出,没办法只能分页查询.这种思想大家可能都会想到,但是如何分页,确实多有门道! 网上用的最多的,也是最常见的分页采用的是skip+limit这种组合方式,这种方式对付小数据倒也可以,但是对付上几百上千万的大数据,却只能望而兴叹... 经过网上各种查找资料,寻师问道的,发现了…
MongoDB Auto-Sharding 解决了海量存储和动态扩容的问题,但离实际生产环境所需的高可靠.高可用还有些距离,所以有了"Replica Sets + Sharding"的解决方案. shard: 使用Replica Sets,确保每个数据节点都具有备份,自动容错转移,自动回复能力. config: 使用3个配置服务器,确保元数据的完整性. route: 使用3个路由进程,实现负载均衡,提高客户端接入性能. 配置Replica Sets + Sharding 架构图: 配置…
这是一种将海量的数据水平扩展的数据库集群系统,数据分表存储在sharding 的各个节点上,使用者通过简单的配置就可以很方便地构建一个分布式MongoDB 集群.MongoDB 的数据分块称为 chunk.每个 chunk 都是 Collection 中一段连续的数据记录,通常最大尺寸是 200MB,超出则生成新的数据块.要构建一个 MongoDB Sharding Cluster,需要三种角色:    Shard Server    即存储实际数据的分片,每个Shard 可以是一个mongod…
MongDB的MapReduce相当于MySQL中的“group by”,所以在MongoDB上使用Map/Reduce进行并行“统计”很容易. 使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数调用emit(key,value),遍历collection中的所有记录,将key和value传递给Reduce函数进行处理.Map函数和Reduce函数可以使用JS来实现,可以通过db.runCommand或mapReduce命令来执行一个MapReduce操作. 示例she…
MongoDB 是一个可移植的数据库,它在流行的每一个平台上都可以使用,即所谓的跨平台特性. 一个运行着的MongoDB 数据库就可以看成是一个MongoDB Server,该Server 由实例和数据库组成,在一般的情况下一个MongoDB Server 机器上包含一个实例和多个与之对应的数据库,但是在特殊情况下,如硬件投入成本有限或特殊的应用需求,也允许一个Server 机器上可以有多个实例和多个数据库.   MongoDB 中一系列物理文件(数据文件,日志文件等)的集合或与之对应的逻辑结构…
本人学习mongodb时间不长,但是鉴于工作的需要以及未来发展的趋势,本人想更深层的认识mongodb底层的原理以及更灵活的应用mongodb,边学边工作实践.  mongodb属于nosql中算是最热门的数据库,所以我们不妨对nosql有一个最基本的了解:  NoSQL,全称是”Not Only Sql”,指的是非关系型的数据库.NoSQL 被我们用得最多的当数key-value 存储,当然还有其他的文档型的.列存储.图型数据库.xml 数据库等.与关系型数据库相比,关系型数据库给你强加了太多…
以下是官网原文地址: http://docs.mongodb.org/manual/tutorial/create-an-auto-incrementing-field/ 概要 MongoDB 的_id字段作为一个主键存在于所有文档的最顶层,_id必须是唯一的,而且总是具有唯一约束的索引.除了唯一约束,你可以在集合中的_id字段上使用任何值, 以下这个指南描述了在_id上创建一个自增序列的两种方式:    Use Counter Collection     Optimistic Loop 注意…