Tesorflow-自动编码器(AutoEncoder)】的更多相关文章

花式解释AutoEncoder与VAE 什么是自动编码器 自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有: 1)跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似的数据,这个其实比较显然,因为使用神经网络提取的特征一般是高度相关于原始的训练集,使用人脸训练出来的自动编码器在压缩自然界动物的图片是表现就会比较差,因为它只学习到了人脸的特征,而没有能够学习到自然界图片的特征: 2)压缩后数据是有损的,这是因为在降维的过程中不可避免的要丢失掉信息: 到了2012年…
机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的. 最大似然估计的原理 给定一个概率分布,假定其概率密度函数(连续分布)或概率质量函数(离散分布)为,以及一个分布参数,我们可以从这个分布中抽出一个具有个值的采样,通过利用,我们就能计算出其概率: 但是,我们可能不知道的值,尽管我们知道…
1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    What is Machine Learning    1 1.2    学习心得和笔记的框架    1 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA -- "知…
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan  <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮.   在…
This blog from : http://weibo.com/ttarticle/p/show?id=2309351000224077630868614681&u=5070353058&m=4077873754872790&cu=5070353058 深度学习全网最全学习资料汇总之模型介绍篇 雷锋网 作者: 三川 2017-02-21 16:38:00 查看源网址 阅读数:4 本文旨在加速深度学习新手入门,介绍 CNN.DBN.RNN.RNTN.自动编码器.GAN 等开发者最…
讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的局限性 机器学习算法的瓶颈 为什么选择了神经网络 深度学习的基本思路 深度学习的诞生历程 深度学习得以发展的因素 典型的网络结构 深度学习的发展现状 在机器视觉中的应用 在语音识别中的应用 在自然语言处理中的应用 在推荐系统中的应用 深度强化学习简介 本集总结 机器学习面临的挑战: 经典的机器学习算…
AI面试必备/深度学习100问1-50题答案解析 2018年09月04日 15:42:07 刀客123 阅读数 2020更多 分类专栏: 机器学习   转载:https://blog.csdn.net/T7SFOKzorD1JAYMSFk4/article/details/80972658 1.梯度下降算法的正确步骤,(正确步骤dcaeb)(梯度下降法其实是根据函数的梯度来确定函数的极小值),这里的问题与其说是梯度下降算法的步骤不如说类似图图像分类训练的整个流程:网络初始化-输入to输出-期望输…
起源:自动编码器 单自动编码器,充其量也就是个强化补丁版PCA,只用一次好不过瘾. 于是Bengio等人在2007年的  Greedy Layer-Wise Training of Deep Networks 中, 仿照stacked RBM构成的DBN,提出Stacked AutoEncoder,为非监督学习在深度网络的应用又添了猛将. 这里就不得不提  “逐层初始化”(Layer-wise Pre-training),目的是通过逐层非监督学习的预训练, 来初始化深度网络的参数,替代传统的随机…
起源:PCA.特征提取.... 随着一些奇怪的高维数据出现,比如图像.语音,传统的统计学-机器学习方法遇到了前所未有的挑战. 数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效.数据挖掘?已然挖不出有用的东西. 为了解决高维度的问题,出现的线性学习的PCA降维方法,PCA的数学理论确实无懈可击,但是却只对线性数据效果比较好. 于是,寻求简单的.自动的.智能的特征提取方法仍然是机器学习的研究重点.比如LeCun在1998年CNN总结性论文中就概括了今后机器学习模型的基本架构. 当然…