Go语言学习笔记十一: 切片(slice) 切片这个概念我是从python语言中学到的,当时感觉这个东西真的比较好用.不像java语言写起来就比较繁琐.不过我觉得未来java语法也会支持的. 定义切片 切片可以使用make函数来定义,也可以像变量声明一样创建个未指定大小的切片. var x []int = make([]int, 3); y := make([]int, 3); z := []int {1, 2, 3}; make有三个参数,第一个是类型(数组类型,所以带方括号),第二个是长度l…
1.数据分析金字塔 2.[文件]-[改变工作目录] 3.[程序包]-[设定CRAN镜像] [程序包]-[安装程序包] 4.向量 c() 例:x=c(2,5,8,3,5,9) 例:x=c(1:100) 表示把1 - 100的所有数字都给x这个变量 5.查看x的类型:>mode(x) 6.查看x的长度:>length(x) 7.将两个向量组成一个矩阵: >rbind(x1, x2)  注:r是row的意思,即行,按行组成矩阵. >cbind(x1, x2)  注c是column的意思,…
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html ---- 前言: 应用背景兼吐槽 继续延续之前每个月至少一次更新博客,归纳总结学习心得好习惯. 这次的主题是论R与excel的结合,又称 论如何正确把EXCEL文件喂给R处理 分为: 1. xlsx包安装及注意事项 2.用vba实现xlsx批量转化csv 以及,这个的对象,针对跟我一样那些从R开始接触编程的,一直以来都是用excel做数据分析的人……编程大牛请轻拍 之所以要研究这个,是因为最近…
今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言来描述. > vars<-c("mpg","hp","wt") > head(mtcars[vars]) mpg hp wt Mazda RX4 21.0 110 2.620 Mazda RX4 Wag 21.0 110 2.875 Datsun 710 22.8 93 2.320 Hornet 4 Drive 21.4 110 3.215 Hornet Sportab…
孩子上初中时拿到过全年级一次考试所有科目的考试成绩表,正好可以用于R语言的统计分析学习.为了不泄漏孩子的姓名,就用学号代替了,感兴趣可以下载测试数据进行练习. num class chn math eng phy chem politics bio history geo pe0158 3 99 120 114 70 49.5 50 49 48.5 49.5 600442 7 107 120 118.5 68.6 43 49 48.5 48.5 49 560249 4 98 120 116 70…
买了三本R语言的书,同时使用来学习R语言,粗略翻下来感觉第一本最好: <R语言编程艺术>The Art of R Programming <R语言初学者使用>A Beginner’s Guide to R <R语言实战>R in Action 一句话简介R语言:R是一种用于数据处理和统计分析的脚本语言,它受到由AT&T实验室开发的统计语言S(Statistics)的启发,且基本上兼容于S语言. 下载并安装R 从google中搜索R,第一个搜索结果就是R语言的网站…
  R是一个惊艳的图形构建平台,这也是R语言的强大之处.本文将分享R语言简单的绘图命令.   本文所使用的数据或者来自R语言自带的数据(mtcars)或者自行创建.   首先,让我们来看一个简单例子: dose <- c(20, 30, 40, 45, 60) drugA <- c(16,20,27,40,60) plot(dose, drugA) 绘制的图形如下:   我们有必要对上述代码做些说明:首句和第二条语句创建两个向量,第三条语句打开一个图形窗口并生成一幅散点图.   这也许是个极为…
R语言中排序有几个基本函数:sort().rank().order().arrange() 一.总结 sort()函数是对向量进行从小到大的排序 rank()函数返回的是对向量中每个数值对应的秩 order()函数返回的值表示位置,依次对应的是向量的最小值.次小值.第三小值……最大值等(位置索引) arrange()函数(需加载dplyr包)针对数据框,返回基于某列排序后的数据框,方便多重依据排序 二.具体用法 1.sort data ,,,,,) sort(data) # sort(data,…
R语言中提供了许多用来整合和重塑数据的强大方法. 整合 aggregate 重塑 reshape 在整合数据时,往往将多组观测值替换为根据这些观测计算的描述统计量. 在重塑数据时,则会通过修改数据的结构(行与列)来决定数据的组织方式. 样例数据:mtcars 从Motor Trend杂志(1974)提取的,它描述了34种车型的设计和性能特点(气缸数.排量.马力.每加仑汽油行驶的英里数,等等,详细可使用help(mtcars). 一.转置 反转行和列,使用函数t()即可对一个矩阵或数据框进行转置.…
R语言提供了非常强大的图形绘制功能.下面来看一个例子: > dose <- c(20, 30, 40, 45, 60)> drugA <- c(16, 20, 27, 40, 60)> drugB <- c(15, 18, 25, 31, 40) > plot(dose, drugA, type="b") > plot(dose, drugB, type="b") 该例中,我们引入了R语言中第一个绘图函数plot.pl…
R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心团队”负责开发.R是基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行.R的语法是来自Scheme. R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux).…
在R语言编译器中,设置当前工作文件夹可以用setwd()函数. > setwd("e://桌面//")> setwd("e:\桌面\")> setwd("e:/桌面/") 这三种结构都是可以编译通过的, 但是在VS C#中却不行,只有一种能运行成功. (PS:R语言在VS中运行要先配置环境,还没配置的童鞋先要配置好,才可运行,如有问题可看我前面的随笔.) 就是这种结构,engine.Evaluate("setwd('e…
常规读取 一般我们读取文件时都会读取全部的文件然后再进行操作,因为R是基于内存进行计算的. data <- read.table("C:\\Users\\Hider\\Desktop\\test.txt", header = TRUE, encoding = "gbk") 但是当读取的数据量很大的时候,读取的时间会让人捉急,而且会把内存给占满,读完数据之后就不用进行下一步操作了,因为电脑都卡死了. 所以只读取数据的前n行是一个不错的选择,边读取边进行处理. 读…
在折腾完爬虫还有一些感兴趣的内容后,我最近在看用R语言进行简单机器学习的知识,主要参考了<机器学习-实用案例解析>这本书. 这本书是目前市面少有的,纯粹以R语言为基础讲解的机器学习知识,书中涉及11个案例.分12章.作者备注以及代码部分都讲得比较深.不过或许因为出书较早,在数据处理方面,他使用更多的是plyr包,而我用下来,dplyr包效果更好.所以许多涉及数据处理的代码,其实可以用更简洁的方法重写.但是思路却是实打实的精华. 我之前在某长途动车上啃完了前三章,两个案例.但越往后读,越觉得后面…
1.不同的行业对数据集(即表格)的行和列称谓不同,统计学家称其为观测(observation)和变量(variable): 2.R语言存储数据的结构: ①向量:类似于C语言里的一位数组,执行组合功能的函数c()可用来创建向量: a <- c(1,2,3,4,5) b <- c("one","two","three") c <- c(TRUE,FALSE,TRUE) 以上,a是数值型向量,b是字符型,c是逻辑型:注意,单个向量中元…
向量化的函数 向量化的函数 ifelse/which/where/any/all/cumsum/cumprod/对于矩阵而言,可以使用rowSums/colSums.对于“穷举所有组合问题",可能需要combn/outer/lower.tri/expand.grid等函数.尽管apply可以显式消除循环,但它实际上是用R而不是C实现的,因此它通常并不能加速代码.然而,其他的apply函数,如lapply,对于加速代码非常帮助 环境和变量的作用域问题 在R语言中,函数被正式的称为“闭包”(clos…
R语言是如何将变量值和变量绑定的 在r语言中,当前的 workspace就是global enviroment,当输入变量名时,首先会在global enviroment中搜索该变量,如有,则将它显示出来. 第二步,如在global enviroment中没有找到该变量民,则搜索search list中的各个包,search list 中的内容可以用search()得到 如果用户使用library()load了一个package ,则这个package将在search list中处于第二的位置…
R语言中的因子就是factor,用来表示分类变量(categorical variables),这类变量不能用来计算而只能用来分类或者计数. 可以排序的因子称为有序因子(ordered factor). factor() 用来生成因子数据对象,语法是: factor(data, levels, labels, ...) 其中data是数据,levels是因子的级别向量,labels是因子的标签向量. 以我的10个月的fitbit数据为例,创建一个因子 fitbit <- read.csv("…
想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的类似语法,没一个可行的: C#中:"fitbit" + month + ".jpg" VB:"fitbit" & month & ".jpg" Haskell:"fitbit" ++ month ++ ".jpg" 还想到concat之…
1.取出当前日期 Sys.Date() [1] "2014-10-29" date()  #注意:这种方法返回的是字符串类型 [1] "Wed Oct 29 20:36:07 2014" 2.在R中日期实际是double类型,是从1970年1月1日以来的天数 typeof(Sys.Date()) [1] "double" 3.转换为日期 用as.Date()可以将一个字符串转换为日期值,默认格式是yyyy-mm-dd. as.Date("…
向量是R语言最基本的数据类型. 单个数值(标量)其实没有单独的数据类型,它只不过是只有一个元素的向量. x <- c(1, 2, 4, 9) x <- c(x[1:3], 88, x[4])   #在最后一个数前面插入一个数值88,可以看到用x[4]可以取出第4个元素,用x[1:3]可以取出前3个元素 typeof(x)    #查看向量里的元素的类型,注意默认是double.[1] "double" mode(x)    #r语言中变量类型称为模式(mode).[1] &…
R语言最强大的方面之一就是函数的向量化,这些函数可以直接对向量的每个元素进行操作.例如: 对每个元素进行开方 > v<-c(4,3,8,16,7.3) > v [1]  4.0  3.0  8.0 16.0  7.3 > x<-sqrt(v)#计算每个元素的开方 > x [1] 2.000000 1.732051 2.828427 4.000000 2.701851 向量之间的加和: > v1<-c(4,6,2) > v2<-c(2,1,3) &…
在win32位的系统下,RODBC包内的函数是可以直接运行的,但在win64位的系统则不支持! 1.读取外部文件read.table()---csv,txt,excel 最基本函数是read.table(),先介绍read.table(),然后再介绍专门用来读csv的read.csv(). Description Reads a file in table format and creates a data frame from it, with cases corresponding to l…
笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一些代码,可读性很强. 关于此包起源,百度联姻d3.js=echarts,echarts+R=recharts包(Yang Zhou和Taiyun Wei),谢益辉老师修改可以传递js参数,实现更多功能, 但是呢,谢益辉老师的改良版包还没发出来,于是该神就做了一个函数,先给大家试用(点赞谢益辉老师).…
R语言的基础包中提供了三种基本类型用于处理日期和时间,Date用于处理日期,它不包括时间和时区信息:POSIXct/POSIXlt用于处理日期和时间,其中包括了日期.时间和时区信息.R内部在存储日期和时间时,使用不同的方式: Date类:存储了从1970年1月1日以来开始计算的天数,更早的日期表示为负值,也就是说,Date类型是一个整数,以天为单位来计算日期,因此,Date适合用于计算日期. POSIXct类:记录了以时间标准时间(UTC)时区位准的,从1970年1月1日开始计时的秒数,即,PO…
一般在跑耗时较长的程序时,我们不知道程序到底有没有正常跑着,或者在爬虫的时候不知道爬到什么时候断了.因此可以添加进度条来显示当前进度,观察进度是否有进展.当进度条卡住的时候,可以判断程序断线,从而可以进行断点重跑. 在R语言中使用 library(tcltk) 加载 tcltk 包可以实现进度条展示. # 进度条 library(tcltk) u <- 1:2000 # 开启进度条 pb <- tkProgressBar("进度","已完成 %", 0,…
R免费使用:统计工具:# 注释,行注释块注释:anything="这是注释的内容"常用R语言编辑器:Rsutdio,Tinn-R,Eclipse+StatET:中文会有乱码帮助:?,help; ?boxplot, help(boxplot),help("[[")运行R文件:source('abc.R')加载包:library(ggplot2)安装包:install.packages()退出R:q()设置工作目录:setwd("E:\\XXX\\yyy\\&…
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适合分类,也适合回归.KNN算法广泛应用在推荐系统.语义搜索.异常检测. KNN算法分类原理图: 图中绿色的圆点是归属在红色三角还是蓝色方块一类?如果K=5(离绿色圆点最近的5个邻居,虚线圈内),则有3个蓝色方块是绿色圆点的“最近邻居”,比例为3/5,因此绿色圆点应当划归到蓝色方块一类:如果K=3(离…
一.简介 决策树分类算法(decision tree)通过树状结构对具有某特征属性的样本进行分类.其典型算法包括ID3算法.C4.5算法.C5.0算法.CART算法等.每一个决策树包括根节点(root node),内部节点(internal node)以及叶子节点(leaf node). 根节点:表示第一个特征属性,只有出边没有入边,通常用矩形框表示. 内部节点:表示特征属性,有一条入边至少两条出边,通常用圆圈表示. 叶子节点:表示类别,只有一条入边没有出边,通常用三角表示. 决策树算法主要用于…
朴素贝叶斯分类(naive bayesian,nb)源于贝叶斯理论,其基本思想:假设样本属性之间相互独立,对于给定的待分类项,求解在此项出现的情况下其他各个类别出现的概率,哪个最大,就认为待分类项属于那一类别.邮箱内垃圾邮件的筛选即应用朴素贝叶斯算法. 朴素贝叶斯分类实现的三阶段: 第一阶段,准备工作.根据具体情况确定特征属性,并对每一特征属性进行划分,然后人工对一些待分类项进行分类,形成训练样本集合.这一阶段的输入是所有待分类数据,输出是特征属性和训练样本.唯一需要人工处理的阶段,质量要求较高…