caffe 中如何打乱训练数据】的更多相关文章

第一: 可以选择在将数据转换成lmdb格式时进行打乱: 设置参数--shuffle=1:(表示打乱训练数据) 默认为0,表示忽略,不打乱. 打乱的目的有两个:防止出现过分有规律的数据,导致过拟合或者不收敛. 在caffe中可能会使得,在模型进行测试时,每一个测试样本都输出相同的预测概率值. 或者,直接打乱训练文件的标签文件:train.txt 方法如下: 1)将 train_160309-train.txt按行打乱,每行内容则保持不变,命令: cd 存放文件的路径 awk 'BEGIN{ 100…
caffe默认使用的数据格式为lmdb文件格式,它提供了把图片转为lmdb文件格式的小程序,但是呢,我的数据为一维的数据,我也要分类啊,那我怎么办?肯定有办法可以转为lmdb文件格式的,我也看了一些源代码,好像是把我们的数据变为Datum的格式(这是一个用google protocol buffer搞的一个数据结构类),然后再把它存为lmdb文件.在Datum里面,label为Int类型,要是我们label为符点数,我还怎么用??(不过看到Datum里面有个float_data的东西,怎么用啊,…
今天发现一个用 numpy 随机化数组的技巧. 需求 我有两个数组( ndarray ):train_datasets 和 train_labels.其中,train_datasets 的每一行和 train_labels 是一一对应的.现在我要将数组打乱并用于训练,打乱后要求两者的行与行之间必须保持原来的对应关系. 实现 一般的实现思路,应该是先将 train_datasets(或 train_labels )打乱,并记录被打乱的行号,再通过行号调整 train_labels (或 train…
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加$PYTHONPATH中去,如可以把 export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 写到 .bashrc中.而下面的做法,只是临时的做法哦: improt sys #sys.…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5909121.html 参考网址: http://www.cnblogs.com/wangxiaocvpr/p/5096265.html 可以根据caffe-master\examples\imagenet \readme.md进行理解. 1 生成LmDB格式文件 caffe中通过图像生成lmdb格式文件的程序为examples/imagenet/create_imagenet.sh.该文件调用bui…
神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/caf…
layer { name: "data" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true crop_size: 600 mean_file: "examples/images/imagenet_mean.binaryproto" } data_param { sourc…
http://blog.csdn.net/u011244794/article/details/51565786 标签: caffeimagenet 2016-06-02 12:57 9385人阅读 评论(7) 收藏 举报  分类: 机器学习(1)  版权声明:本文为博主原创文章,未经博主允许不得转载. 因为自己在网络上查到的资料对于一个新手来说虽然指明了方向,但是在细节上没有给出很好的实例,因此我把自己训练的过程记录下来. [实验环境] 物理内存:64G Free:7.5G  CPU个数:3,…
sql 中实现打乱数据的排序    order by NEWID()就实现了数据的打乱 …
caffe中大多数层用C++写成. 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记. 这时候就需要用python 写一个输入层. 如在fcn 的voc_layers.py 中 有两个类: VOCSegDataLayer SBDDSegDataLayer 分别包含:setup,reshape,forward, backward, load_image, load_label. 不需要backward 没有参数更新. import…