(当时写这篇题解的时候,,,不知道为什么,,,写的非常冗杂,,,不想改了...) 题意:一张有n个点的图,其中每天第i个点到第j个点的边都有$P_{i, j}$的概率开放,每天可以选择走一步或者留在原地,求从1号点到n号点的最优期望值.题解: $f(x)$表示从$x$出发,走到$n$的最优期望时间.因为在一个点x时,如果要选择后继节点,肯定要选$f$值越小的越好,因此考虑贪心的选择后继状态.$a_{i}$表示$f(x)$第$i$小的x.考虑分层DP,依次确定$a_{i}$的值,并同时维护$f$值…
CF605E Intergalaxy Trips 考虑你是不知道后来的边的出现情况的,所以可以这样做:每天你都选择一些点进行观察,知道某天往这些点里面的某条边可用了,你就往这条边走.这样贪心总是对的. 我们定义一个点的权值就是这个点到 $ n $ 的期望距离.同时它就是我们要算的答案. 但是注意到一个性质,我们总是从期望较大的点走向期望较小的点(显然的). 所以我们可以类似反过来的 dijkstra 的更新,维护当前权值的点,然后这个点当前的值就必然是最终这个点的答案.所以我们可以拿它去更新到达…
题意:n个人,玩抓人游戏,每抓住一个人都要猜这个人是谁.对于每一局,第i个人有$p_{i}$的概率被抓到.游戏结束当且仅当每个人都在某局中被抓到并且猜中自己的名字,求一个合适的策略来使得期望游戏局数最少,输出这个期望最少局数.题解:设$g[i]$表示到$i$局为止,已经全部被猜中过的概率,$f[i][x]$表示到第$i$局为止,已经猜中过第$x$个人的概率.那么有$$ans = \sum_{i = 1}^{\infty} (g[i] - g[i - 1])i$$随游戏局数增长,$g[x]$会趋近…
首先,题目中的无向简单连通图代表着没有自环,重边... 总分的期望 = 每条边的期望之和...................每条边的期望又可以拆成$u \to v$的期望和$v \to u$的期望 记$f[i]$表示$1 \to n$的路径中,$i$的期望经过次数 而$u \to v$的期望只要知道$f[u], f[v]$就可以求出 注意到,$f[i]$为每个时刻点在$i$的概率之和,即$\sum\limits_{t =0}^{\infty} p^i_t$ 那么,我们有$f[i] = \sum…
大意: 给定矩阵$p$, $p_{i,j}$表示每一秒点$i$到点$j$有一条边的概率, 每秒钟可以走一条边, 或者停留在原地, 求最优决策下从$1$到$n$的期望用时. $f_x$为从$x$到$n$的期望用时, 每次肯定尽量选取$f$值小的后继走 假设每个点按$f$值排序后的序列为$a_1,a_2,...,x$, 有 $$f_x=1+f_1p_{x,a_1}+f_2p_{x,a_2}(1-p_{x,a_1})+...+f_xp_{x,x}\prod(1-p_{x,a_i})$$ $$f_x=\…
题意 : 给出一个 N * M 的网格,然后给你 K 条鱼给你放置,现有规格为 r * r 的渔网,问你如果渔网随意放置去捕捞小鱼的情况下,捕到的最大期望值是多少? 分析 :  有一个很直观的想法就是如果将鱼放在越靠近中间的位置,其被捕捞的可能性越大 事实也的确如此,鱼的位置越靠近边缘则能覆盖到它的渔网安放位置就越少 那么这就有了一个贪心的算法 将第一条鱼放在最中间的位置算出被捕捉的概率 被捕捉的概率 = 能覆盖到当前小鱼位置的渔网个数 / 整个网格的全部安放渔网的方法数 然后从中间这个点开始向…
[CF605E]Intergalaxy Trips(贪心,动态规划) 题面 Codeforces 洛谷 有\(n\)个点,每个时刻第\(i\)个点和第\(j\)个点之间有\(p_{ij}\)的概率存在一条边.每个时刻可以沿着一条边走或者留在原地.求从\(1\)号点走到\(n\)号点的最优的期望时间. 题解 设\(E(x)\)表示从\(x\)走到\(n\)的最短期望时间,那么考虑当前停的这个点的下一步应该怎么走,首先,你一定会走向当前能够到达的所有点中,\(E(x)\)最小的那个,而如果所有可以到…
 Intergalaxy Trips time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output The scientists have recently discovered wormholes — objects in space that allow to travel very long distances between gal…
E. Intergalaxy Trips time limit per test:2 seconds memory limit per test:256 megabytes input:standard input output:standard output The scientists have recently discovered wormholes — objects in space that allow to travel very long distances between g…
刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小 Z 到达 N 号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. Input 第一行是正整数N和M,分别表示该图的顶点数…