线性回归 Python实现】的更多相关文章

线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的.双变量的和多变量的.单变量和双变量的画出了图,多变量的由于高维空间难以实现,所以没有画图.单变量和双变量的使用的自己模拟的一个简单的房价数据集,多变量的使用的boston房价数据集. 1.单变量线性回归 代码 运行结果 2.双变量线性回归 代码 运行结果 3.多变量线性回归 代码 运行结果 如果需…
本代码参考自:https://github.com/lawlite19/MachineLearning_Python#%E4%B8%80%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92 首先,线性回归公式:y = X*W +b 其中X是m行n列的数据集,m代表样本的个数,n代表每个样本的数据维度.则W是n行1列的数据,b是m行1列的数据,y也是. 损失函数采用MSE,采用梯度下降法进行训练 1 .加载数据集并进行读取 def load_csvdata(filename,s…
目录 1. 线性模型 2. 线性回归 2.1 一元线性回归 3. 一元线性回归的Python实现 3.1 使用 stikit-learn 3.1.1 导入必要模块 3.1.2 使用 Pandas 加载数据 3.1.3 快速查看数据 3.1.4 使用 stlearn 创建模型 3.1.5 模型评估 3.2 手动实现 3.2.1 计算 w 和 b 3.2.2 功能封装 1. 线性模型 给定 \(d\) 个属性描述的示例 \(\boldsymbol{x} = (x_1; x_2; ...; x_d)\…
目录 1 多元线性回归 2 多元线性回归的Python实现 2.1 手动实现 2.1.1 导入必要模块 2.1.2 加载数据 2.1.3 计算系数 2.1.4 预测 2.2 使用 sklearn 1 多元线性回归 更一般的情况,数据集 \(D\) 的样本由 \(d\) 个属性描述,此时我们试图学得 \[f(\boldsymbol{x}_i) = \boldsymbol{w}^T\boldsymbol{x}_i+b \text{,使得} f(\boldsymbol{x}_i) \simeq y_i…
本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描述(Dataset Description) train.csv 该文件中是2014年每月前20天每小时的观察数据,每小时的数据是18个维度的(其中之一是PM2.5). test.csv 该文件中包含240组数据,每组数据是连续9个小时的所有观测数据(同样是18个维度). 请预测每组数据对应的第10…
import numpy as np import pylab def plot_data(data, b, m): x = data[:, 0] y = data[:, 1] y_predict = m*x + b pylab.plot(x, y_predict, 'k-') pylab.plot(x, y, 'o') pylab.show() def gradient(data, initial_b, initial_m, learning_rate, num_iter): b = init…
线性回归优点:结果易于理解,计算上不复杂缺点:对非线性的数据拟合不好适用数据类型:数值型和标称型数据horse=0.0015*annualSalary-0.99*hoursListeningToPulicRadio这就是所谓的回归方程,其中的0.0015和-0.99称作回归系数,求这些回归系数的过程就是回归.一旦有了这些回归系数,再给定输入,做预测就非常容易了具体的做法就是用回归系数乘以输入值,再将结果全部加在一起,就得到了预测值回归的一般方法(1)收集数据:采用任意方法收集数据(2)准备数据:…
题目太长啦!文档下载[传送门] 第1题 简述:设计一个5*5的单位矩阵. import numpy as np A = np.eye(5) print(A) 运行结果: 第2题 简述:实现单变量线性回归. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #-----------------计算代价值函数----------------------- def com…
import numpy as np def computer_error_for_give_point(w, b, points): # 计算出 观测值与计算值 之间的误差, 并累加,最后返回 平均误差 loss = 0 for i in range(len(points)): x = points[i, 0] y = points[i, 1] loss += ((w * x + b ) - y) ** 2 return loss/float(len(points)) # 下面函数只求导一次更…
1.背景知识 1.1 插值.拟合.回归和预测 插值.拟合.回归和预测,都是数学建模中经常提到的概念,而且经常会被混为一谈. 插值,是在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点. 插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值. 拟合,是用一个连续函数(曲线)靠近给定的离散数据,使其与给定的数据相吻合. 因此,插值和拟合都是根据已知数据点求变化规律和特征相似的近似曲线的过程,但是插值要求近似曲线完全经过给定的数据点,…