首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)——三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息
】的更多相关文章
时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)——三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息
from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html 在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测. 时间序列数据一般有以下几种特点:1.趋势(Trend) 2. 季节性(Seasonality). 趋势描述的是时间序列的整体走势…
R语言与数据分析之八:时间序列--霍尔特指数平滑法
上篇我和小伙伴们分享了简单指数平滑法,简单指数平滑法仅仅能预測那些处于恒定水平和没有季节变动的时间序列,今天和大家分享非恒定水平即有增长或者减少趋势的.没有季节性可相加模型的时间序列预測算法---霍尔特指数平滑法(Holt). Holt 指数平滑法预计当前时间的水平和斜率.其平滑水平是由两个參数控制.alpha:预计当前点水平.beta:预计当前点趋势部分斜率.两个參数都介于0-1之间.当參数越接近0,大部分最近的观測值的权值将较小. 我们以1866年到1911年每年女士裙子直径为案例,我们首先…
R语言与数据分析之九:时间内序列--HoltWinters指数平滑法
今天继续就指数平滑法中最复杂的一种时间序列:有增长或者减少趋势而且存在季节性波动的时间序列的预測算法即Holt-Winters和大家分享.这样的序列能够被分解为水平趋势部分.季节波动部分,因此这两个因素应该在算法中有相应的參数来控制. Holt-Winters算法中提供了alpha.beta和gamma 来分别相应当前点的水平.趋势部分和季节部分.參数的去执法范围都是0-1之间,而且參数接近0时.最近的观測值的影响权重就越小.我们以澳大利亚昆士兰州海滨纪念商品的月度销售日子为分析对象.老套路.咱…
【原创】基于SVM作短期时间序列的预测
[面试思路拓展] 对时间序列进行预测的方法有很多, 但如果只有几周的数据,而没有很多线性的趋势.各种实际的背景该如何去预测时间序列? 或许可以尝试下利用SVM去预测时间序列,那么如何提取预测的特征呢? 传统的做法是提取1.2.3.4.5.7.9.13个单位时间的数据作为特征进行预测: 举个例子进行分析,比如每天都有口香糖的销量,那么如何通过几周的数据预测明天的数据, 就可以选择前1.2.3.4.5.7.14天的数据作为特征,从而预测明天的数据, 通过构建特征,再选择核函数进行预测,其中调参的参数…
UEBA 学术界研究现状——用户行为异常检测思路:序列挖掘prefixspan,HMM,LSTM/CNN,SVM异常检测,聚类CURE算法
论文 技术分析<关于网络分层信息泄漏点快速检测仿真> "1.基于动态阈值的泄露点快速检测方法,采样Mallat算法对网络分层信息的离散采样数据进行离散小波变换;利用滑动窗口对该尺度上的小波系数进行加窗处理,计算离散采样数据窗函数包含区间的小波熵,实现有效去噪和特征提取.2.将泄露点检测值和滑动窗口中平均熵值之间的差与动态阈值作比较,判断是否存在泄露点.""<基于云计算入侵检测数据集的内网用户异常行为分类算法研究>" "采用Weka机…
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:GitHub 在上一篇博客中,我们使用了简单的OneR算法对Iris进行分类,在…
转载:二次指数平滑法求预测值的Java代码
原文地址: http://blog.csdn.net/qustmeng/article/details/52186378?locationNum=4&fps=1 import java.util.LinkedList; import java.util.List; public class Demo { /** * 二次指数平滑法求预测值 * @param list 基础数据集合 * @param year 未来第几期 * @param modu…
JVM探究 面试题 JVM的位置 三种JVM:HotSpot 新生区 Young/ New 养老区 Old 永久区 Perm 堆内存调优GC的算法有哪些?标记清除法,标记压缩,复制算法,引用计数法
JVM探究 面试题: 请你弹弹你对JVM的理解?Java8虚拟机和之前的变化更新? 什么是OOM?什么是栈溢出StackOverFlowError?怎么分析 JVM的常用调优参数有哪些? 内存快照如何抓取,怎么分析Dump文件?知道吗? 弹弹JVM中类加载器你的认认识?rt-jar ext application 视频教程 https://www.bilibili.com/video/BV1iJ411d7jS?p=2&spm_id_from=pageDriver JVM的位置 JVM的体系结构…
统计学习方法(三)——K近邻法
/*先把标题给写了.这样就能经常提醒自己*/ 1. k近邻算法 k临近算法的过程,即对一个新的样本,找到特征空间中与其最近的k个样本,这k个样本多数属于某个类,就把这个新的样本也归为这个类. 算法 输入:训练数据集 其中为样本的特征向量,为实例的类别,i=1,2,…,N:样本特征向量x(新样本): 输出:样本x所属的类y. (1)根据给定的距离度量,在训练集T中找出与x最相邻的k个点,涵盖这k个点的邻域记作: (2)在中根据分类决策规则(如多数表决)决定x的类别y: …
GC算法精解(五分钟让你彻底明白标记/清除算法)
GC算法精解(五分钟让你彻底明白标记/清除算法) 相信不少猿友看到标题就认为LZ是标题党了,不过既然您已经被LZ忽悠进来了,那就好好的享受一顿算法大餐吧.不过LZ丑话说前面哦,这篇文章应该能让各位彻底理解标记/清除算法,不过倘若各位猿友不能在五分钟内看完,那就不是LZ的错啦. 好了,前面只是小小开个玩笑,让各位猿友放松下心情.下面即将与各位分享的,是GC算法中最基础的算法------标记/清除算法.如果搞清楚这个算法,那么后面两个就完全是小菜一碟了. 首先,我们回想一下上一章提到的根搜索算法,它…