GAN背后的数学原理】的更多相关文章

  模拟上帝之手的对抗博弈——GAN背后的数学原理 简介 深度学习的潜在优势就在于可以利用大规模具有层级结构的模型来表示相关数据所服从的概率密度.从深度学习的浪潮掀起至今,深度学习的最大成功在于判别式模型.判别式模型通常是将高维度的可感知的输入信号映射到类别标签.训练判别式模型得益于反向传播算法.dropout和具有良好梯度定义的分段线性单元.然而,深度产生式模型相比之下逊色很多.这是由于极大似然的联合概率密度通常是难解的,逼近这样的概率密度函数非常困难,而且很难将分段线性单元的优势应用到产生式…
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hac…
引言: 最近一直在学习主成分分析(PCA),所以想把最近学的一点知识整理一下,如果有不对的还请大家帮忙指正,共同学习. 首先我们知道当数据维度太大时,我们通常需要进行降维处理,降维处理的方式有很多种,PCA主成分分析法是一种常用的一种降维手段,它主要是基于方差来提取最有价值的信息,虽然降维之后我们并不知道每一维度的数据代表什么意义,但是它将主要的信息成分保留了下来,那么PCA是如何实现的呢? 本文详细推导了PCA的数学原理,最后以实例进行演算. PCA的数学原理 (一)降维问题 大家都知道,PC…
实验平台:win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): a.鼠标拖拽旋转物体,类似于OGRE中的“OgreBites::CameraStyle::CS_ORBIT”. b.键盘WSAD键移动镜头,鼠标拖拽改变镜头方向,类似于OGRE中的“OgreBites::CameraStyle::CS_FREELOOK”. 1.坐标变换的一个例子,两种思路理解多个变换的叠加 现在考虑Scale(1,2,1); Transtale(2,1,0); Rot…
word2vec 是 Google 于 2013 年推出的一个用于获取词向量的开源工具包.我们在项目中多次使用到它,但囿于时间关系,一直没仔细探究其背后的原理. 网络上 <word2vec 中的数学原理详解> 有一系列的博文,对这个问题已经做了很好的阐述.作者十分用心,从最基础的预备知识.背景知识讲起,这样读者就不用到处找相关资料了. 这里,我就把其博文链接直接搬运过来: (一)目录和前言 (二)预备知识 (三)背景知识 (四)基于 Hierarchical Softmax 的模型 (五)基于…
1. 概率思想与归纳思想 0x1:归纳推理思想 所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.抽象地来说,由个别事实概括出一般结论的推理称为归纳推理(简称归纳),它是推理的一种 例如:直角三角形内角和是180度:锐角三角形内角和是180度:钝角三角形内角和是180度:直角三角形,锐角三角形和钝角三角形是全部的三角形:所以,一切三角形内角和都是180度. 这个例子从直角三角形,锐角三角形和钝角三角形内角和分别都是180度这些个别性知识,推出了"…
前端开发中,hover是最常见的鼠标操作行为之一,用起来也很方便,CSS直接提供:hover伪类,js可以通过mouseover+mouseout事件模拟,甚至一些第三方库/框架直接提供了 hover API ,比如 jQuery 的 hover() 函数.大部分前端开发者在使用这些很方便的方法时,可能并没有思考过 hover 背后的实现原理. hover 是跟 DOM 绑定的,常规 DOM 是一个个矩形(CSS 盒模型),鼠标移动时浏览器需要判断鼠标指针坐标是否在这个 DOM 的矩形范围之内,…
RSA加密数学原理 */--> *///--> *///--> UP | HOME RSA加密数学原理 Table of Contents 1 引言 2 RSA加密解密过程 2.1 加密 2.2 解密 3 收尾 1 引言 RSA加密算法,即是目前最有影响力的咬钥加密算法, 他能够抵抗到目前为止已知的绝大多数密码攻击, 已被ISO推荐为公钥数据加密标准. 该算法基于一个十分简单的数论事实: 将两个大素数乘十分容易, 但相要对乘积进行因式分解却极其困难, 因此可以将乘积公开作为加密密钥. (…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…