目录 引 主要内容 代码 Mirza M, Osindero S. Conditional Generative Adversarial Nets.[J]. arXiv: Learning, 2014. @article{mirza2014conditional, title={Conditional Generative Adversarial Nets.}, author={Mirza, Mehdi and Osindero, Simon}, journal={arXiv: Learning…
GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度慢 3.resolution太小,大了无语义信息 4.无reference 5.intend to generate same image 6.梯度消失 论文摘要: 1.Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing S…
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是半监督学习.当我们说学习概率分布,典型的思维是学习一个概率密度.这通常是通过定义一个概率密度的参数化族\((P_{\theta})_{\theta\in R^d}\),然后基于样本最大似然:如果当前有真实样本\(\{x^{(i)}\}_{i=1}^m\),那么是问题转换成: \[\underset{\thet…
学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Generative-Adver…
Generative Adversarial Nets(简称GAN)是一种非常流行的神经网络. 它最初是由Ian Goodfellow等人在NIPS 2014论文中介绍的. 这篇论文引发了很多关于神经网络对抗性训练的兴趣,论文的引用次数已接近2700+. 许多变形的GAN出现了:DCGAN,Sequence-GAN,LSTM-GAN等.在NIPS 2016中,甚至会有整个专门针对对抗训练的研讨会! 首先,让我们回顾一下这篇论文的要点. 之后,我们将尝试使用TensorFlow和MNIST数据实现…
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是gan Generative model G用来生成样本 Discriminative model D用来区别G生成样本的真假 G努力的方向是生成出以假乱真的样本,让D认为这样本是人类给的而不是G创造的,D则相反. 一个更加形象的比喻 小时候老师让试卷上家长签字,以确保家长看过我那卑微的成绩.于是乎我尽…
目录 目标 框架 理论 数值实验 代码 Generative Adversarial Nets 这篇文章,引领了对抗学习的思想,更加可贵的是其中的理论证明,证明很少却直击要害. 目标 GAN,译名生成对抗网络,目的就是训练一个网络来拟合数据的分布,以前的方法,类似高斯核,Parzen窗等都可以用来估计(虽然不是很熟). GAN有俩个网络,一个是G(z)生成网络,和D(x)判别网络, 其中\(z\)服从一个随机分布,而\(x\)是原始数据, \(z\)服从一个随机分布,是很重要的一点,假设\(\h…
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Conditional GAN 图2.1 CGAN的目标函数 图2.2 CGAN的判别器和生成器的结构图及loss 图2.2来自这里,图2.3是来自论文内部,两者在原理结构上没任何差别. 图2.3 CGAN结构图 如图2.3所示,CGAN相比于GAN在于,其输入部分增加了额外的信息,且此额外信息是固定的,如图像类别或…
本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如何通过当前图片生成你不同年龄时候的样子. 假设给你一张人脸(没有告诉你多少岁)和一堆网上爬取的人脸图像(包含不同年龄的标注人脸但不一定配对),你能给出那一张人脸80岁或者5岁时候的样子么.当然回答不能,当前现有的人脸年龄研究都试图学习一个年龄组间的变换,因此需要配对的样本和标注的询问图片.在本文中,作者从一个…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa…