https://www.jianshu.com/p/854d111670b6 纯干货:深度学习实现之空间变换网络-part1 在第一部分中,我们主要介绍了两个非常重要的概念:仿射变换和双线性插值,并了解到这两个概念对于理解空间变换网络(Spatial Transformer Networks)非常重要. 在这篇文章中,我们将详细介绍一篇空间变压器网络这一论文——Go ogle Deepmind的研究人员Max Jaderberg,Karen Simonyan,Andrew Zisserman和K…
空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解 2018年11月14日 17:05:41 Rosemary_tu 阅读数 1295更多 分类专栏: 计算机视觉   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/Rosemary_tu/article/details/84069878 本文是对Google DeepMind 团队2015年发表的空间变换网络STN的详细讲解,笔…
pytorch空间变换网络 本文将学习如何使用称为空间变换器网络的视觉注意机制来扩充网络.可以在DeepMind paper 阅读更多有关空间变换器网络的内容. 空间变换器网络是对任何空间变换的差异化关注的概括.空间变换器网络(简称STN)允许神经网络学习如何在输入图像上执行空间变换, 以增强模型的几何不变性.例如,它可以裁剪感兴趣的区域,缩放并校正图像的方向.而这可能是一种有用的机制,因为CNN对于旋转和 缩放以及更一般的仿射变换并不是不变的. STN的最棒的事情之一,能够简单地将其插入任何现…
2015, NIPS Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu Google DeepMind 为什么提出(Why) 一个理想中的模型:我们希望鲁棒的图像处理模型具有空间不变性,当目标发生某种转化后,模型依然能给出同样的正确的结果 什么是空间不变性:举例来说,如下图所示,假设一个模型能准确把左图中的人物分类为凉宫春日,当这个目标做了放大.旋转.平移后,模型仍然能够正确分类,我们就说这个模型在这个任务上具有…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我们的思想拥有持久性. 传统的神经网络并不能做到这点,看起来也像是一种巨大的弊端.例如,假设你希望对电影中的每个时间点的时间类型进行分类.传统的神经网络应该很难来处理这个问题--使用电影中先前的事件推断后续的事件. RNN 解决了这个问题.…
上节回顾深度学习与人类语言处理-语音识别(part1),这节课我们将学习如何将seq2seq模型用在语音识别 LAS 那我们来看看LAS的Encoder,Attend,Decoder分别是什么 Listen Listen是一个典型的Encoder结构,输入为声学特征\({x^1,x^2,...,x^T}\),输出和输入长度相同,是对声学特征的高阶表示,\({h^1,h^2,...,h^T}\). 我们希望Encoder可以做到以下两件事: 提取输入的内容信息 移除不同说话者之间的差异,去掉噪音…
1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据.举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果.于是就有了如下的网络结构图: 图1: Inception module, naive version 于是我们的网络就变胖了,通过增加网络的…
STN的主要思想是通过网络学习一个变化参数,然后计算出新图在原图上对应的坐标,再通过某种填充方法填充新图. 使得得到的新图很好的适应nn训练.可以理解为是拿来把不规范的图像变换为标准形式的图像. 网络结构图如下: 主要步骤分为以下三步: (1) Localisation net 计算出变化参数,是一个仿射变换的参数,用来表示原图与新图坐标的对应. (2) Grid generator 通过变换参数和新图来计算出原图坐标,这一步是做个矩阵运算,以目标图V的所有坐标点为自变量,加入变化参数做一个矩阵…
对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h) x和y表示的是左上角的位置,w和h表示的是矩形框的宽和高 目标检测是分类和回归都进行的一种算法 对于位置的回归而言,使用全连接层获得结果的4个输出,使用欧式距离计算损失值 对图像物体进行卷积,对卷积后的特征图分开进行计算,一条通路计算回归,一条通路计算分类 目标检测的实际操作步骤: 第一步:下载…