UOJ #79 一般图最大匹配 带花树】的更多相关文章

http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利的找增广路操作,每次将一个点作为根(染成白色),然后向下bfs黑白染色,两个白点相邻时将这两个白点缩到割顶成一个点(用并查集维护一下)(匈牙利算法也是只用白点找增广,黑点相当于重复计算了没有意义),然后把奇环里所有黑点视为白点放到队列里bfs. 设置一个pre数组记录返回的路径(因为bfs的方向和匈…
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Submission(s): 649    Accepted Submission(s): 202…
一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后手没有路可走,由于假设还有路可走,这一条交错路,就是一个增广路,必定有更大的匹配. Game Time Limit: 1 Second      Memory Limit: 32768 KB Fire and Lam are addicted to the game of Go recently.…
http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next(表示匹配),状态s(-1表示这个点没访问过,0表示这个点可以搜另一条相邻的未盖边,1表示这个点不能用于搜另一条相邻的未盖边),pre数组(u原先的匹配是Next[u],增广时u的匹配断掉了,u就与pre[u]进行匹配,即Next[u]=pre[u],Next[pre[u]]=u).从一个点pre和N…
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于一个小组. 有若干个这样的条件:第 v 个男生和第 u 个男生愿意组成小组. 请问这个班级里最多产生多少个小组? 输入格式 第一行两个正整数,n,m.保证 n≥2. 接下来 m 行,每行两个整数 v,u 表示第 v 个男生和第 u 个男生愿意组成小组.保证 1≤v,u≤n,保证 v≠u,保证同一个条…
传送门 带花树 不加证明的说一下过程好了:每次从一个未匹配点\(S\)出发bfs,设\(S\)为\(1\)类点,如果当前点\(v\)在本次bfs中未经过,分为以下两种情况 1.\(v\)是未匹配点,那么从\(S\)到\(v\)的路径就是一条增广路,把这条路径增广即可 2.\(v\)是匹配点,那么把\(v\)设为\(2\)类点,并把\(v\)的匹配点扔进bfs的队列里 如果\(v\)已经经过了,且是一个\(1\)类点的话无视,否则如果是一个\(2\)类点,说明找到了一个奇环,把这个奇环缩成一个点(…
问题描述 ​ 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\)为\(G\)的一个匹配,当且仅当\(|S|\)最大时,称\(S\)为\(G\)的最大匹配 ​ 那么要如何求解一个图的最大匹配呢? 特殊图上? ​首先考虑特殊图的最大匹配问题,也就是很经典的二分图最大匹配,这个问题可以用匈牙利算法解决,这里就不再赘述具体的实现等细节问题,我们只回顾一下这个算法的核心思…
从前一个和谐的班级,所有人都是搞OI的.有 \(n\) 个是男生,有 \(0\) 个是女生.男生编号分别为 \(1,-,n\) . 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于一个小组. 有若干个这样的条件:第 \(v\) 个男生和第 \(u\) 个男生愿意组成小组. 请问这个班级里最多产生多少个小组? 输入格式 第一行两个正整数,\(n,m\) .保证 \(n≥2\) . 接下来 \(m\) 行,每行两个整数 \(v,u\) 表示第 \(v\)…
板子: #include<iostream> #include<cstdio> #include<algorithm> #include<vector> #include<cstdlib> #include<cmath> #include<cstring> using namespace std; #define maxn 10010 #define llg long long #define yyj(a) freopen…
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图. 1.一个二分图中的最大匹配数等于这个图中的最小点覆盖数 König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数.如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选…