FCN的理解】的更多相关文章

FCN特点 1.卷积化 即是将普通的分类网络丢弃全连接层,换上对应的卷积层即可 2.上采样 方法是双线性上采样差 此处的上采样即是反卷积3.因为如果将全卷积之后的结果直接上采样得到的结果是很粗糙的,所以作者将不同池化层的结果进行上采样之后来优化输出 3.跳跃结构: 现在我们有1/32尺寸的heatMap,1/16尺寸的featureMap和1/8尺寸的featureMap,1/32尺寸的heatMap进行upsampling操作之后,因为这样的操作还原的图片仅仅是conv5中的卷积核中的特征,限…
语义分割--全卷积网络FCN详解   1.FCN概述 CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别). 传统的基于CNN的语义分割方法是:将像素周围一个小区域(如25*25)作为CNN输入,做训练和预测.这样做有3个问题: - 像素区域的大小如何确定 - 存储及计算量非常大 - 像素区域的大小限制了感受野的大小,从而只能提取一些局部特征 为什么需要FCN? 我们分类使用的网络通常会在最后连接几层全连接层,它会将原…
论文地址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 这篇论文使用全卷积神经网络来做语义上的图像分割,开创了这一领域的先河.看了一天这个论文,结合网上别的其他资料,对这篇论文比较好的解读有: 1 https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html 2 https://zhu…
图像语义分割的意思就是机器自动分割并识别出图像中的内容,我的理解是抠图- 之前在Faster R-CNN中借用了RPN(region proposal network)选择候选框,但是仅仅是候选框,那么我想提取候选框里面的内容,就是图像语义分割了. 简单的理解就是,图像的"分词技术". 参考文献: 1.知乎,困兽,关于图像语义分割的总结和感悟 2.微信公众号,沈MM的小喇叭,十分钟看懂图像语义分割技术 . . 一.FCN全卷积:Fully Convolutional Networks…
本文先对FCN的会议论文进行了粗略的翻译,使读者能够对论文的结构有个大概的了解(包括解决的问题是什么,提出了哪些方案,得到了什么结果).然后,给出了几篇博文的连接,对文中未铺开解释的或不易理解的内容作了详尽的说明.最后给出了FCN代码的详解(待更新). Fully Convolutional Networks for Semantic Segmentation 用于语义分割的全卷积网络 摘要 卷积网络是可以产生具有层次结构的特征的强大的视觉模型.我们展示了只通过由端到端,像素像素训练的卷积网络进…
学习语义分割反卷积网络DeconvNet 一点想法:反卷积网络就是基于FCN改进了上采样层,用到了反池化和反卷积操作,参数量2亿多,非常大,segnet把两个全连接层去掉,效果也能很好,显著减少了参数,只有290万,提升了性能 摘要 提出了一个创新的语义分割算法,反卷积网络.网络前几层用VGG16的结构.反卷积网络由反卷积层和反池化层组成,他们来实现像素级别的语义分割.我们把网络应用于输入图像得到每个结果,再将所有结果组合起来构成最终的语义分割图.这个方法可以降低现有的基于组合深度卷积网络和类别…
一.写在前面 fcn是首次使用cnn来实现语义分割的,论文地址:fully convolutional networks for semantic segmentation 实现代码地址:https://github.com/shelhamer/fcn.berkeleyvision.org 全卷积神经网络主要使用了三种技术: 1. 卷积化(Convolutional) 2. 上采样(Upsample) 3. 跳跃结构(Skip Layer) 为了便于理解,我拿最简单的结构voc-fcn-alex…
下面代码由搭档注释,保存下来用作参考. github项目地址:https://github.com/shekkizh/FCN.tensorflowfrom __future__ import print_function import tensorflow as tf import numpy as np import TensorflowUtils as utils import read_MITSceneParsingData as scene_parsing import datetime…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
全球计算机视觉三大顶会之一 ECCV 2018(European Conference on Computer Vision)即将于 9 月 8 -14 日在德国慕尼黑拉开帷幕.届时,旷视首席科学家孙剑博士将带领团队远赴盛会,助力计算机视觉技术的交流与落地.本文介绍了旷视科技被 ECCV 2018 所接收的一篇论文,该论文提出了一种用于场景理解的统一感知解析网络——UPerNet. 论文名称:<Unified Perceptual Parsing for Scene Understanding>…