TF数据读取队列机制详解 一.TFR文件多线程队列读写操作 TFRecod文件写入操作 import tensorflow as tf def _int64_feature(value): # value必须是可迭代对象 # 非int的数据使用bytes取代int64即可 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) num_shards = 2 instance_perPshard = 2 for i…
首更: 由于TensorFlow的奇怪形式,所以载入保存的是sess,把会话中当前激活的变量保存下来,所以必须保证(其他网络也要求这个)保存网络和载入网络的结构一致,且变量名称必须一致,这是caffe...好吧,caffe也没有这种python风格的设定... 废话少说,导入包: import numpy as np import tensorflow as tf 保存会话: W = tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32) b = tf.V…
一.基本队列: 队列有两个基本操作,对应在tf中就是enqueue&dequeue tf.FIFOQueue(2,'int32') import tensorflow as tf '''FIFO队列操作''' # 创建队列 # 队列有两个int32的元素 q = tf.FIFOQueue(2,'int32') # 初始化队列 init= q.enqueue_many(([0,10],)) # 出队 x = q.dequeue() y = x + 1 # 入队 q_inc = q.enqueue(…
添加记录节点 -> 汇总记录节点 -> run汇总节点 -> [书写器生成]书写入文件 [-> 刷新缓冲区] 可视化关键点: 注意, 1.with tf.name_scope('str'):上下文环境,每一个name_scope内的张量被统一到一个可展开的节点中,且可以嵌套,而带'name'属性的张量会成为可视化图中最小的节点. 2.超参数是张量,使用tf.summary.histogram(layer_name + '/biases', biases)记录,在网页的HISTOGR…
一.符号分类 符号对我们想要进行的计算进行了描述, 下图展示了符号如何对计算进行描述. 我们定义了符号变量A, 符号变量B, 生成了符号变量C, 其中, A, B为参数节点, C为内部节点! mxnet.symbol.Variable可以生成参数节点, 用于表示计算时的输入. 二.常用符号方法 一个Symbol具有的属性和方法如下图所示: 关联节点查看 list_arguments()用来检查计算图的输入参数; list_outputs()返回此Symbol的所有输出,输出的自动命名遵循一定的规…
一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__init__() self.features = t.nn.Sequential( t.nn.Conv2d(3, 6, 5), t.nn.ReLU(), t.nn.MaxPool2d(2, 2), t.nn.Conv2d(6, 16, 5), t.nn.ReLU(), t.nn.MaxPool2d(2…
一.简化前馈网络LeNet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 import torch as t     class LeNet(t.nn.Module):     def __init__(self):         super(LeNet, self).__init__()         self.features = t.nn.Sequential(  …
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训练方法教程 一.API介绍 基础操作列表 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』简单的数学计算 『TensorFlow』变量初始化 常用基础操作 『Ten…
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型…
TensoFlow自动求导机制 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归 下面做了三个简单尝试, 利用包含gradients.assign等tf函数直接构建图进行自动梯度下降 利用优化器计算出导数,再将导数应用到变量上 直接使用优化器不显式得到导数 更新参数必须使用assign,这也可能会涉及到控制依赖问题. # Author : Hellcat # Time : 2/20/2018 import tensorflow as tf tf.set_random_seed(…