生物统计学 总体和抽样 抽样方法: ========================================================= 简单随机抽样SRS:随机误差,系统误差 标准误,有效性,评价随机误差. 如果是样本容量是无穷个:则f趋近于0:,下方公式做变换,由 变为: Eg:1000个就可以用变换后的式子 如果是样本容量是有限个,则使用: ============================================ Stratified sampling分层抽样…
1.2 Simple Random Sampling Census, :全部信息 Sampling: 抽样方式: representative sample:有偏向,研究者选择自己觉得有代表性的sample probability sampling:使用随机数表不用研究者来抽样,较为客观(研究者可以选择自己觉得有代表性和没有代表性的sample) simple random sampling. simple random sampling with replacement, whereby a…
单台服务器做直播,总归有单点风险,利用SRS的Forward机制 + Edge Server设计,可以很容易搭建一个大规模的高可用集群,示意图如下 源站服务器集群:origin server cluster,可以借助forward机制,仅用少量的服务器,专用于处理推流请求. 边缘服务器集群:edge server cluster,可以用N台机器,从源站拉流,用于较大规模的实时播放. 源站前置负载均衡(硬件或软件负载均衡都行),上图中用haproxy来实现tcp的软负载均衡. 边缘服务器前置反向代…
R语言实现分层抽样(Stratified Sampling)以iris数据集为例 1.观察数据集 head(iris) Sampling)以iris数据集为例">  选取数据集中前6个数据,我们可以看出iris数据集一共有5个字段. dim(iris) Sampling)以iris数据集为例">  iris数据集一共有150条数据,5个字段 summary(iris) Sampling)以iris数据集为例">  观察各个变量的内容,可以看出前四个变量(Se…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specifiedmultivariate probability distribution (i.e. from…
  越学越懵了,计算机中是怎么进行采样的,用了这么久的 rand() 函数,到现在才知道是怎么做的. 从均匀分布中采样   计算机中通过线性同余发生器(linear congruential generator,LCG)很容易从一个 $ x \sim Uniform[0, 1)$ 的均匀分布中进行采样.如果要从 \(y \sim Uniform[a, b)\) 的均匀分布中采样,只需要 \(x\) 的基础上做个变换 \(y = (b-a)x + a\) 即可.   当然除了 LCG 外,还有其它…
二维Gibbs Sampling算法 Gibbs Sampling是高维概率分布的MCMC采样方法.二维场景下,状态(x, y)转移到(x’, y’),可以分为三种场景 (1)平行于y轴转移,如上图中从状态A转移到状态B. (2)平行于x轴转移,如上图中从状态A转移到状态C. (3)其他情况转移,如上图从状态A转移到状态D. 对于上述三种情况,我们构造细致平稳条件 (1)A -> B B –> A 显然有 即 我们令转移矩阵中x = x1轴上的状态转移概率为p(y|x1),则场景一天然满足细致…
1.基本采样算法(Basic Sampling Algorithms) 1.1.标准概率分布(Standard distributions) 1.2.拒绝采样(Rejection sampling) 1.3.可调节的拒绝采样(Adaptive rejection sampling) 1.4.重要采样(Importance sampling) 1.5.采样-重要性-重采样(Sampling-importance-resampling) 1.6.采样与EM算法(Sampling and EM alg…
转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯…