深度学习大规模MIMO中的功率分配】的更多相关文章

摘要-本文使用深度学习的方法在大规模MIMO网络的下行链路中执行max-min和max-prod功率分配.更确切地说,与传统的面向优化的方法相比,训练深度神经网络来学习用户设备(UE)的位置和最优功率分配策略之间的映射,然后用于预测新的UE集合的功率分配曲线。与传统的优化定向方法相比,使用深度学习的方法显著提高了功率分配的复杂性-性能折衷。特别地,所提出的方法不需要计算任何统计平均值,而是需要使用标准方法来计算,并且能够保证接近最优的性能. 1 引言 大规模MIMO是指一种无线网络技术,其中基站…
本文来自于腾讯bugly开发者社区,未经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/5809bb47cc5e52161640c5c8 Dev Club 是一个交流移动开发技术,结交朋友,扩展人脉的社群,成员都是经过审核的移动开发工程师.每周都会举行嘉宾分享,话题讨论等活动. 本期,我们邀请了 腾讯 TEG 技术工程师"文亚飞",为大家分享<深度学习在OCR中的应用>. 大家好,我是文亚飞,来自腾讯TEG,目前负责图像识别相关的工作.OCR(…
AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索.推荐.广告.风控.智能调度.语音识别.机器人.无人配送等多个领域,帮助美团3.2亿消费者和400多万商户改善服务和体验,帮大家吃得更好,生活更好. 基于AI技术,美团搭建了世界上规模最大,复杂度最高的多人.多点实时智能配送调度系统:基于AI技术,美团推出了业内第一款大规模落地的企业应用级语音交互产品,为50万骑手配备了智能语…
AFM:Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 模型入上图所示,其中sparse iput,embedding layer,pair-wise interaction layer都和FM一样,后面加入了一个attention net生成一个关于特征交叉项的权重,将FM原来的二次项累加变成加权累加.这里的attention net其实…
[深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢? 最初应用 1x1 卷积核的神经网络是 Network In Network,然后 GoogLeNet 和 VGG 也不约而同的更正了. 他们在论文中解释,大概有下面 2 个意义. 1.增加网络的深度 这个就比较好理解…
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoch数进行学习率衰减. 举例说明: # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch < 60 # lr = 0.0005 if 60 <= epoch < 90 在上述例子中,每30个epochs衰减十倍学习率. 计算公式…
本书的前四章旨在介绍开始构建生成式深度学习模型所需的核心技术.在第1章中,我们将首先对生成式建模领域进行广泛的研究,并从概率的角度考虑我们试图解决的问题类型.然后,我们将探讨我们的基本概率生成模型的第一个例子,并分析为什么随着生成式任务的复杂性增长,可能需要部署深度学习技术.第2章提供了开始构建更复杂的生成模型所需的深度学习工具和技术的指南.这旨在成为深度学习的实用指南,而不是对该领域的理论分析.特别是,我将介绍Keras,一个构建神经网络的框架,可用于构建和训练已在文献中发表的一些最先进的深度…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:高航 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上是线性模型(左边部分, Wide model)和DNN的融合(右边部分,Deep Model). 推荐系统需要解决两个问题: 记忆性: 比如通过历史数据知道"麻雀会飞","鸽子会飞" 泛化性: 推断在历史数据中从未见过的情形,"带翅膀的动物会飞" W…
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同. 记号:  i,o,k,p,s i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size input size,卷积/反卷积输出大小 output size output size,卷积/反卷积核大小 kerne…
之前研究的CRF算法,在中文分词,词性标注,语义分析中应用非常广泛.但是分词技术只是NLP的一个基础部分,在人机对话,机器翻译中,深度学习将大显身手.这篇文章,将展示深度学习的强大之处,区别于之前用符号来表示语义,深度学习用向量表达语义.这篇文章的最大价值在于,为初学者指明了研究方向.下面为转载的原文:   在深度学习出现之前,文字所包含的意思是通过人为设计的符号和结构传达给计算机的.本文讨论了深度学习如何用向量来表示语义,如何更灵活地表示向量,如何用向量编码的语义去完成翻译,以及有待改进的地方…
在处理深度学习分类问题时,会用到一些评价指标,如accuracy(准确率)等.刚开始接触时会感觉有点多有点绕,不太好理解.本文写出我的理解,同时以语音唤醒(唤醒词识别)来举例,希望能加深理解这些指标. 1,TP / FP / TN / FN 下表表示为一个二分类的混淆矩阵(多分类同理,把不属于当前类的都认为是负例),表中的四个参数均用两个字母表示,第一个字母表示判断结果正确与否(正确用T(True),错误用F(False),第二个字母表示判定结果(正例用P(Positive),负例用N(Nega…
笔记源于一次微课堂,由数据人网主办,英伟达高级工程师ParallerR原创.大牛的博客链接:http://www.parallelr.com/training/ 由于本人白痴,不能全部听懂,所以只能把自己听到的写个小笔记. 一.GPU的基本概念 GPU计算比CPU计算要快很多,计算机用GPU会大大加大速度 问题:现在不是有量子计算,GPU与其有什么区别?那么量子计算是否比GPU更能是明日之星呢? CPU 中ALU只有四个,虽然大,但是control与cache占比较大:而GPU又很多,虽然小,但…
1.python中的广播: (1)广播是一种手段,可以让python代码执行得更快,我们来看看python实际如何执行. 下面矩阵列出了100克苹果.牛肉.鸡蛋和蛋白质中含有的碳水化合物.蛋白质和脂肪的数量 比如说我们的目标是四种食物中卡路里有多少百分比.比如100克苹果中有56+1.2+1.8卡路里,然后苹果中来自碳水化合物的卡路里占比是百分之56/59=94.4%,所以苹果中大部分的热量都来自碳水化合物.我们要做的计算就是对上面四列数据求和,得到100g上面食物中卡路里的总量,这些食物分别是…
Single-Scale:是指把一张图片送到 CNN : Multi-Scale:一般会送到 CNN 十张图片:比如高宽是 256 Χ 256 的图片,Multi-Scale会在它的四个角以及中心裁剪 5 张 224 Χ 224 的图片,然后再进行翻转,总共得到十张图片,最后全部送到 CNN.…
在自己完成的几个有关深度学习的Demo中,几乎都出现了batch_size,iterations,epochs这些字眼,刚开始我也没在意,觉得Demo能运行就OK了,但随着学习的深入,我就觉得不弄懂这几个基本的概念,对整个深度学习框架理解的自然就不够透彻,所以今天让我们一起了解一下这三个概念. 1.batch_size 深度学习的优化算法,用大白话来说其实主要就是梯度下降算法,而每次的参数权重更新主要有两种方法. (1)遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度 这种方法…
Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms are a subset of the machine learning algorithms, which aim at discovering multiple levels of distributed representations. Recently, numerous deep learni…
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框架. 将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光.由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获.Deep CNNs的单机多GPU…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
[源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并行训练 1.1 分布式并行训练的必要 1.2 分布式训练 1.3 训练并行机制 1.3.1 三种机制 1.3.2 如何使用 1.4 数据并行训练 0x02 通信 & 架构 2.1 方法和架构 2.2 异步 vs 同步 0x03 具体架构 3.1 MapReduce 3.2 参数服务器 (PS) 3.…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
http://www.csdn.net/article/2015-03-24/2824301 [编者按]本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisiewicz的个人博客文章,阅读本文,你可以更好的理解计算机视觉是怎么一回事,同时对机器学习是如何随着时间缓慢发展的也有个直观的认识. 以下为正文: 本文我们来关注下三个非常相关的概念(深度学习.机器学习和模式识别),以及他们与2015年最热门的科技主题(机器人和人工智能)的联系. 图1 人工智能并非将…
[深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点[1][2],产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是Mariana的一部分,Marian…
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网络模块.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: GPU 学习深度学习系列Part 1:传统机器学习的回顾 GPU 学习深度学习系列Part 2:Tensorflow 简明原理 上一讲中,我们用最简单的代码,实现了最简单的深度学习框…
最近看到一份不错的深度学习资源--Stanford中的CS20SI:<TensorFlow for Deep Learning Research>,正好跟着学习一下TensorFlow的基础,还是收获颇丰,随手整理成博客随时翻阅. 为什么选择TensorFlow? 自从12年AlexNet获得ImageNet大赛的冠军后,深度学习开始流行起来,也因为硬件的快速发展GPU并行计算配合易用的API,让深度学习以及神经网络大放光彩. 深度学习的框架其实有很多,目前来说最火的还要数Pytorch.Te…
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学习是机器学习中一种基于对数据进行表征学习的算法.观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边.特定形状的区域等.而使用某些特…
一.多层感知机MLP 1.MLP概述 对于含有单个隐含层的多层感知机(single-hidden-layer Multi-Layer Perceptron, MLP),可以将其看成是一个特殊的Logistic回归分类器,这个特殊的Logistic回归分类器首先通过一个非线性变换Φ(non-linear transformation)对样本的输入进行非线性变换,然后将变换后的值作为Logistic回归的输入.非线性变换的目的是将输入的样本映射到一个空间,在该空间中,这些样本是线性可分的.这个中间层…
Amazon公司的Werner Vogels于上周宣布Amazon深度学习框架将会正式选用MXNet,并且AWS将会通过增加源代码贡献.改进文档以及支持来自其它框架的可视化.开发以及迁移工具,为实现MXNet成功的长远目标做出贡献. Vogles指出在欺诈检测.推荐流水线.库存和产品检查审计等领域,有一系列无法通过编写显式算法实现的计算任务,对此问题一类被称为深度学习的机器学习方法正日益发挥重要作用,此外,在内容搜索.自主无人机.订单履行中心机器人.文本及语音识别等领域中也广泛地使用了机器学习方…
经过比拼,AlphaGo最终还是胜出,创造了人机大战历史上的一个新的里程碑.几乎所有的人都在谈论这件事情,这使得把“人工智能”.“深度学习”的热潮推向了新的一个高潮.AlphaGo就像科幻电影里具有人的思维和情感的机器人一样,被极大地神话了,而且这让更多的人对人工智能产生了畏惧感.那么,AlphaGo的胜利真的意味着人工智能(AI)已经超越人类了吗? 答案肯定是No. AlphaGo仍只是个机器,之所以它能够战胜李世石是完全依靠它强大的运算能力和模仿能力,但本身并不具备人类拥有的智慧.面对新的规…
1.AOA估计在毫米波大规模MIMO中的重要性 在毫米波大规模MIMO的CSI估计中,AoA估计具有重要地位,主要原因归纳如下: 毫米波大规模MIMO 的信道具有空域稀疏性,可以简单通过AoA 和路径增益将其准确建模.这类似于波束域MIMO 的几何信道模型.基于该信道模型,CSI 估计可以先获取角度信息,然后通过最小二乘(Least Square, LS)逼近求解 路径增益.相比之下,传统MIMO 的散射信道模型不但不能准确反映毫米波大规模MIMO信道的稀疏特性,反而会增加信道建模的复杂性,这是…
目录: 数据相关性 硬件依赖性 特征工程 解决问题方法 执行时间 可解释性 一.数据相关性 深度学习与传统机器学习最重要的区别是,随着数据量的增加,其性能也随之提高.当数据很小的时候,深度学习算法并不能很好地执行,这是因为深度学习算法需要大量的数据才能完全理解它.下图便能很好的说明这个事实: 从上图我们可以看到,随着数据量的增大,深度学习的性能会越来越好,而传统机器学习方法性能表现却趋于平缓:但传统的机器学习算法在数据量较小的情况下,比深度学习有着更好的表现. 二.硬件依赖性 深度学习算法在很大…