pcA降维 SVD】的更多相关文章

前言: PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景.奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜…
存个代码,以后参考. numpy次成分分析和PCA降维 SVD分解做次成分分析 原图: 次成分复原图: 代码: import numpy as np from numpy import linalg import cv2 as cv src = cv.imread("/home/xueaoru/图片/output_3_0.png") gray = cv.cvtColor(src,cv.COLOR_BGR2GRAY) S,V,D = linalg.svd(gray) vv = np.ze…
降维是机器学习中很重要的一种思想.在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”.另外在高维特征中容易出现特征之间的线性相关,这也就意味着有的特征是冗余存在的.基于这些问题,降维思想就出现了. 降维方法有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维. 1.奇异值分解(SVD) 为什么先介绍SVD算法,因为在后面的PCA算法的实现用到了SVD算法.SVD算法不光可以用…
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单介绍PCA和SVD原理的基础上比较了两者的区别与联系,以及两者适用的场景和得到的效果. 一.SVD 1.1 特征值分解 在说奇异值分解之前,先说说特征值分解,特征值分解 \(A = PDP^{-1}\) ,只对A为正交矩阵来说,且得到的D是对角的.由于特征值分解和奇异值分解的本质都是矩阵分解,其本身…
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如上,不能满足上式的. 二.协方差矩阵 方差(Variance)是度量一组数据分散的程度.方差是各个样本与样本均值的差的平方和的均值. 协方差(Covariance)是度量两个变量的变动的同步程度,也就是度量两个变量线性相关性程度.如果两个变量的协方差为0,则统计学上认为二者线性无关.而方差是协方差的…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或者有一些特征带有的信息和其他一些特征是重复的(比如一些特征可能会线性相关).我们希望能够找出一种办法来帮助我们衡量特征上所带的信息量,让我们在降维的过程中,能够即减少特征的数量,又保留大部分有效信息——将那些带有重复信息的特征合并,并删除那些带无效信息的特征等等——逐渐创造出能够代表原特征矩阵大部分…
PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解)实现,查阅多个文章很容易更糊涂,所以搞懂之后写下这个总结. 先说最关键的点: a. PCA两个主要的实现方式: SVD(奇异值分解), EVD(特征值分解). b. 特征值分解方式需要计算协方差矩阵,分解的是协方差矩阵.  SVD方式不需要计算协方差矩阵,分解的是经过中心化的原数据矩阵 1.特征值分…
重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的.PCA应该也是如此.在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为…
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^…
降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示,这里每个像素点都是一维,即是个1024×768维的数据.而其实眼睛真正看到的只是一副二维的图片,这里眼睛其实在不知不觉中做了降维的工作,把1024×768维的数据降到2维 降维的好处,显而易见,数据更易于显示和使用,去噪音,减少计算量,更容易理解数据 主流的降维技术,包含: 主成分分析,princi…
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计算量,耗费时间和资源.所以我们通常会对数据重新变换一下,再跑模型.数据变换的目的不仅仅是降维,还可以消除特征之间的相关性,并发现一些潜在的特征变量. 降维算法由很多,比如PCA…
最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把我的一些收获总结一下,以免以后再忘记. PCA的简单推导 PCA有两种通俗易懂的解释, 1)是最大化投影后数据的方差(让数据更分散):地址:http://www.cnblogs.com/shixisheng/p/7107363.html 2)是最小化投影造成的损失.(下边讲的就是这个方法) 这两个思…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…
参考资料:Mastering Machine Learning With scikit-learn 降维致力于解决三类问题.第一,降维可以缓解维度灾难问题.第二,降维可以在压缩数据的同时让信息损失最 小化.第三,理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解 PCA简介 主成分分析也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 构的技术.PCA通常用于高维数据集的探索与可视化.还可以用于数据压缩,数据预处理等.PCA可…
PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component Analysi)是一种掌握可以提取主要特征对的方法,它可以从多元失误中解析出主要影响因素.计算朱成福的目的是将高维数据投影到低维空间.主要是用于降维,提取数据的主要特征分量. 降维,当然以为着信息的丢失,但是鉴于数据本身常常存在相关性,我们可以想办法在降维的同时将信息的随时尽量降低. PCA Alg…
PCA(主成分分析法) 1. PCA(最大化方差定义或者最小化投影误差定义)是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了.那么PCA的核心思想是什么呢? 例如D维变量构成的数据集,PCA的目标是将数据投影到维度为K的子空间中,要求K<D且最大化投影数据的方差.这里的K值既可以指定,也可以利用主成分的信息来确定. PCA其实就是方差与协方差的运用. 降维的优化目标:将一组 N 维向量降为 K 维,其目标是选择 K 个单位正交基,使得原始数据变换到这组基上后,…
PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一种常用的数据分析方法. PCA通过线性变换,将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维. 降维思路 原数据: 二维数据据降维到一维数: 这是去掉特征1和特征2降维后的样子,从图中我们可以感觉到,右边这个比左边这个好一些,因为他们分散的间距比较大,可区…
前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法步骤.主要介绍PCA算法的算法流程: 4)应用实例.针对PCA的实际应用,列出两个应用实例: 5)常见问题补充.对于数据预处理过程中常遇到的问题进行补充: 6)扩展阅读.简要介绍PCA的不足,并给出K-L变换…
前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特征之间还要保持线性无关,这样的方法称为主成分分析(Principal component analysis,PCA),新数据的特征称为主成分,得到主成分的方法有两种:直接对协方差矩阵进行特征值分解和对数据矩阵进行奇异值分解(SVD). 一.主成分分析基本思想   数据X由n个特征降维到k个特征,这k…
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mxn matrix.若資料的維度太大時, 可能不利於分析, 例如這m筆資料用作機器學習. PCA的想法是算出這mxn matrix的斜方差矩陣, 此矩陣大小為nxn, 計算此矩陣n個特徵值(eigen value)及其對應的特徵向量(eigen vector), 依eigen value大小由小到大排…
之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, score, latent, tsquared] = pca(X) 其中,X是n*p的,n是样本个数,p是特征维数. (1)coeff矩阵是返回的转换矩阵,就是把原始样本转换到新空间中的转换矩阵. (2)score是原始样本矩阵在新样本空间中的表示,也就是原始样本乘上转换矩阵,但是还不是直接乘,要减去一…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
重点整理: PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法 1.原始数据: 假定数据是二维的 x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]T y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T 2.计算协方差矩阵 (1)协方差矩阵: 标准差和方差一般是用来描述一维数据的 协方差就是一种用来度量两个随机变量关系的统计量(协方差…
目录 1. PCA降维 PCA:主成分分析(Principe conponents Analysis) 2. 维度的概念 一般认为时间的一维,而空间的维度,众说纷纭.霍金认为空间是10维的. 3. 为什么要进行降维? 维度灾难:当维度超过一定值的时候,分类器效果呈现明显下降. PCA旨在找到数据中的主成分,并利用这些主成分表征原始数据,从而达到降维的目的.举一个简单的例子,在三维空间中有一系列数据点,这些点分布在一个过原点的平面上.如果我们用自然坐标系x,y,z三个轴来表示数据,就需要使用三个维…
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Sep, 2014 QUESTION TOPICS Singular Value Decomposition Principal Component Analysis Intuitive Explanations Statistics (academic discipline) Machine Lear…
数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀疏矩阵运算的运算速度. whitening whiten的目的是解除特征向量中各个特征之间的相关性,同时保证保证每个特征的方差一致,是数据集归一化的一种形式.设特征向量 X = (X1,X2,X2),未知的量是随机变量,因此X1 X2 X3 都是随机变量,他们都服从某个分布,有确定的期望.注意到wh…
由于论文需要,开始逐渐的学习CNN关于文本抽取的问题,由于语言功底不好,所以在学习中难免会有很多函数不会用的情况..... ̄へ ̄ 主要是我自己的原因,但是我更多的把语言当成是一个工具,需要的时候查找就行~~~~但是这也仅限于搬砖的时候,大多数时候如果要自己写代码,这个还是行不通的. 简单的说一下在PCA,第一次接触这个名词还是在学习有关CNN算法时,一篇博客提到的数据输入层中,数据简单处理的几种方法之一,有提到PCA降维,因为论文需要CNN做一些相关的工作,想做一篇综述类文章,所以思路大概是这样…
MATLAB实例:PCA降维 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. iris数据 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 4.6,3.1,1.5,0.2,1 5.0,3.6,1.4,0.2,1 5.4,3.9,1.7,0.4,1 4.6,3.4,1.4,0.3,1 5.0,3.4,1.5,0.2,1 4.4,2.9,1.4,0.2,1 4.9,3.1,1.5,0.1…
PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. 二.优缺点 优:将高维数据映射到低维,降低数据的复杂性,识别最重要的多个特征 不足:不一定需要,且可能损失有用信息 适用数值型数据 三.步骤 1.原始数据X,对于每列属性,去平均值(也可以对数值进行标准分化) 2.计算样本点的协方差矩阵(列间两两计算相关性) 3.求出协方差矩阵的特征值和对应的特征向…