1.snowflake简介         互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大:比如某些银行类业务,需要按每日日期制定交易流水号:又比如我们希望用户的ID是随机的,无序的,纯数字的,且位数长度是小于10位的.等等,不同的业务场景需要的ID特性各不一样,于是,衍生了各种ID生成器,但大多数利用数据库控制ID的生成,性能受数据…
比雪花算法更好用的ID生成算法(单机或分布式唯一ID) 转载及版权声明 本人从未在博客园之外的网站,发表过本算法长文,其它网站所现文章,均属他人拷贝之作. 所有拷贝之作,均须保留项目开源链接,否则禁止转载. 拷贝之作,内容难免过期,当前页面才有最新内容. 算法介绍 一个全新的雪花漂移算法,生成的ID更短.速度更快. 核心在于缩短ID长度的同时,具有极高瞬时并发处理量(保守值 50W/0.1s). 原生支持 C#/Java/Go/Rust/C 等语言,并由 Rust 提供 PHP.Python.N…
参考美团文档:https://tech.meituan.com/2017/04/21/mt-leaf.html Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器产生的id必须不同. 性能测试数据: Snowflake算法核心 把时间戳,工作机器id,序列号组合在一起. 41-bit的时间可以表示(1L<<41)/(1000L*3600…
snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID. 这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器.时间等. 其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0. 比如在snowflake中的64-bit分别表示如下图(图片来自网络)…
SnowFlake算法原理介绍 在分布式系统中会将一个业务的系统部署到多台服务器上,用户随机访问其中一台,而之所以引入分布式系统就是为了让整个系统能够承载更大的访问量.诸如订单号这些我们需要它是全局唯一的,同时我们基本上都会将它作为查询条件:出于系统安全考虑不应当让其它人轻易的就猜出我们的订单号,同时也要防止公司的竞争对手直接通过订单号猜测出公司业务体量:为了保证系统的快速响应那么生成算法不能太耗时.而雪花算法正好解决了这些问题. SnowFlake 算法(雪花算法), 是Twitter开源的分…
分布式ID 1 方案选择 UUID UUID是通用唯一识别码(Universally Unique Identifier)的缩写,开放软件基金会(OSF)规范定义了包括网卡MAC地址.时间戳.名字空间(Namespace).随机或伪随机数.时序等元素.利用这些元素来生成UUID. UUID是由128位二进制组成,一般转换成十六进制,然后用String表示. 550e8400-e29b-41d4-a716-446655440000 UUID的优点: 通过本地生成,没有经过网络I/O,性能较快 无序…
分布式主键ID生成方案 分布式主键ID的生成方案有以下几种: 数据库自增主键 缺点: 导入旧数据时,可能会ID重复,导致导入失败 分布式架构,多个Mysql实例可能会导致ID重复 UUID 缺点: 占用空间大 UUID一般是字符串存储,查询效率低 没有排序,无法趋势递增 使用Redis生成ID 缺点: 依赖Redis高可用 雪花算法 缺点: 依赖服务器时间,如果时间回调,将会导致ID重复 雪花算法原理 雪花算法是 Twitter 开源的主键生成算法 snowflake 它用64位二进制表示主键,…
解决方案: 基于Redis的全局id生成策略:(推荐此方法) 基于雪花算法的全局id生成: https://www.cnblogs.com/kobe-qi/p/8761690.html 基于zookeeper的全局id生成: https://www.iyunv.com/thread-660410-1-1.html…
在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库分表后,就不能依赖于每个表的自增ID来全局唯一标识这些数据了.因此,我们需要提供一个全局唯一的ID号生成策略来支持分库分表的环境.下面来介绍两种非常优秀的解决方案: 1. 数据库自增ID——来自Flicker的解决方案 因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助…
在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库分表后,就不能依赖于每个表的自增ID来全局唯一标识这些数据了.因此,我们需要提供一个全局唯一的ID号生成策略来支持分库分表的环境.下面来介绍两种非常优秀的解决方案: 1. 数据库自增ID--来自Flicker的解决方案 因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助…