Flink组件及特性】的更多相关文章

Flink 是一个针对流数据和批数据的分布式处理引擎.它主要是由 Java 代码实现.目前主要还是依靠开源社区的贡献而发展.对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已.Flink 会把所有任务当成流来处理,这也是其最大的特点.Flink 可以支持本地的快速迭代,以及一些环形的迭代任务.并且 Flink 可以定制化内存管理.就框架本身与应用场景来说,Flink 更相似与 Storm. 1.Flink组件栈 部署模式 Flink能部署在云上或者局域网中,…
前面介绍了批量处理的WorkCount是如何执行的 <从flink-example分析flink组件(1)WordCount batch实战及源码分析> <从flink-example分析flink组件(2)WordCount batch实战及源码分析----flink如何在本地执行的?> 这篇从WordCount的流式处理开始 /** * Implements the "WordCount" program that computes a simple wor…
上一章<windows下flink示例程序的执行> 简单介绍了一下flink在windows下如何通过flink-webui运行已经打包完成的示例程序(jar),那么我们为什么要使用flink呢? flink的特征 官网给出的特征如下: 1.一切皆为流(All streaming use cases ) 事件驱动应用(Event-driven Applications) 流式 & 批量分析(Stream & Batch Analytics) 数据管道&ETL(Data…
分布式---基于Redis进行接口IP限流 场景 为了防止我们的接口被人恶意访问,比如有人通过JMeter工具频繁访问我们的接口,导致接口响应变慢甚至崩溃,所以我们需要对一些特定的接口进行IP限流,即一定时间内同一IP访问的次数是有限的. 实现原理 用Redis作为限流组件的核心的原理,将用户的IP地址当Key,一段时间内访问次数为value,同时设置该Key过期时间. 比如某接口设置相同IP10秒内请求5次,超过5次不让访问该接口. 1. 第一次该IP地址存入redis的时候,key值为IP地…
1.概述 在如今数据爆炸的时代,企业的数据量与日俱增,大数据产品层出不穷.今天给大家分享一款产品—— Apache Flink,目前,已是 Apache 顶级项目之一.那么,接下来,笔者为大家介绍Flink 的相关内容. 2.内容 2.1 What's Flink Apache Flink 是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处理和批处理作为两种…
Flink 剖析 1.概述 在如今数据爆炸的时代,企业的数据量与日俱增,大数据产品层出不穷.今天给大家分享一款产品—— Apache Flink,目前,已是 Apache 顶级项目之一.那么,接下来,笔者为大家介绍Flink 的相关内容. 2.内容 2.1 What's Flink Apache Flink 是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
本文由  网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提供 API来像Spark一样进行批处理,但两者处理的基础是完全不同的.Flink把批处理当作流处理中的一种特殊情况.在Flink中,所有 的数据都看作流,是一种很好的抽象,因为这更接近于现实世界. 1.1 基本架构 下面我们介绍下Flink的基本架构,Flink系统的架构与Spark类似,是一个基于…
1. Flink.Storm.Sparkstreaming对比 Storm只支持流处理任务,数据是一条一条的源源不断地处理,而MapReduce.spark只支持批处理任务,spark-streaming本质上是一个批处理,采用micro-batch的方式,将数据流切分成细粒度的batch进行处理.Flink同时支持流处理和批处理,一条数据被处理完以后,序列化到缓存后,以固定的缓存块为单位进行网络数据传输,缓存块设为0为流处理,缓存块设为较大值为批处理. storm------ --------…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…