GAN的全称是 Generative Adversarial Networks,中文名称是生成对抗网络.原始的GAN是一种无监督学习方法,巧妙的利用“博弈”的思想来学习生成式模型. 1 GAN的原理 GAN的基本原理很简单,其由两个网络组成,一个是生成网络G(Generator) ,另外一个是判别网络D(Discriminator).它们的功能分别是: 生成网络G:负责生成图片,它接收一个随机的噪声 $z$,通过该噪声生成图片,将生成的图片记为 $G(z)$. 判别网络D:负责判别一张图片是真实…