MinMax 容斥 学习笔记】的更多相关文章

min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i) \] 一些定义 \(\max (S),\min (S)\)表示分别集合\(S\)的最大,最小元素 套路式子 \[ \max(S)=\sum_{\varnothing\not=S\subseteq T}(-1)^{|T|-1}\min(T) \] 证明 首先我…
min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in S}(-1)^{|T|-1}\min(T)\] 这个东西叫 min-max容斥. 证明可以拿二项式反演证 例题 hdu4336 Card Collector 题目 有 \(n\) 种卡片,每一秒都有 \(P_i\) 的概率获得一张第 \(i\) 种卡片,求每张卡片都至少有一张的期望时间. 记 \(…
基本形式 \[ \max(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T) \] 证明 不提供数学证明. 简要讲一下抽象理解伪证: 考虑从大到小排名为 \(i\) 的数,这个数会作为集合 \(T\) 的最小值出现时,那么 \(T\) 剩下的所有值都是从大于它的数中选取的.那么选取方案就是 \(\binom{i-1}{|T|-1}\). 如果 \(i=1\),也就是 \(a_i = \max(S)\),那么它只会被加上…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
[Learning]min-max容斥以及推广 min-max容斥 就是max(a,b)=min(a)+min(b)-min(a,b) max(a,b,c)=a+b+c-min(a,b)-min(a,c)-min(b,c)+min(a,b,c) .... 为什么这样做? 有的时候min要好算很多 期望的线性 所以可以直接套期望 然后例题: [HAOI2015]按位或 [HAOI2015]按位或 推广 from:在Ta的博客查看 max_k(S)表示S中第k大 依然可以套期望: luoguP470…
经常和概率期望题相结合. 对于全序集合 \(S\),有: \[\max S=\sum\limits_{T\subseteq S,T\not=\varnothing}(-1)^{\vert T\vert -1}\min T \] \[\min S=\sum\limits_{T\subseteq S,T\not=\varnothing}(-1)^{\vert T\vert -1}\max T \] 证明 对于 \(x\in S\),假设 \(x\) 是 \(S\) 中第 \(k\) 大的元素,则建立…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html 题解 设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下.($\frac ni$ 表示期望每 $\frac ni$ 步喂这 i 只鸽子一次) $$ans = \sum_{i=1}^n (-1)^{i+1}\binom ni \frac ni \cdot f(i)$$ 考虑如何求 f(i) .假设我们喂饱的是第一只鸽子,那么假设我们喂了其他鸽子 j 次,那么…
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq S}^{ }(-1)^{|T|-1}E(min(T))$ 那么只需要知道每个子集中最早得到的物品的期望时间即可得出答案. 对于每个子集,最早得到的物品的期望时间就是一次选择能得到这个子集中元素的概率的倒数. 用一次选择能得到这个子集中的元素的方案数除上总方案数(每次共有$2*n*m-n-m$种选择方…
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 \(998244353\) 取模. 题解 这道题要求点集 \(S\) 中所有点都至少经过一次的期望步数,直接做不好做,要先用一个 min-max 容斥转换…
[LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). 那么怎么求解每个集合的\(min\)呢. 显然以起点为根节点,如果点集中一个点在另外一个点的子树内,显然不需要考虑,索性丢掉.考虑剩下的点,把他们的子树丢掉(要访问子树肯定要访问到某个点),那么剩下的点直接扣下来做一个高斯消元就可以求出到达每个点的期望,那么\(min\)就求出来. 设\(f[S]\…