首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
PCA算法和实例
】的更多相关文章
PCA算法和实例
PCA算法 算法步骤: 假设有m条n维数据. 1. 将原始数据按列组成n行m列矩阵X 2. 将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值 3. 求出协方差矩阵C=1/mXXT 4. 求出协方差矩阵的特征值以及对应的特征向量 5. 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P 6. Y=PX即为降维到k维后的数据 实例 以这个为例,我们用PCA的方法将这组二维数据降到一维 因为这个矩阵的每行已经是零均值,所以我们可以直接求协方差矩阵: 然后求其特征值和特…
模式识别(1)——PCA算法
作者:桂. 时间:2017-02-26 19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处,谢谢. 前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法…
PCA算法详解——本质上就是投影后使得数据尽可能分散(方差最大),PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主⼦空间(principal subspace),使得投影数据的⽅差被最⼤化(Hotelling, 1933),即最大方差理论。
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的…
PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) 假如你要处理一个数据集, 数据集中的每条记录都是一个\(d\)维列向量. 但是这个\(d\)太大了, 所以你希望把数据维度给降下来, 既可以去除一些冗余信息, 又可以降低处理数据时消耗的计算资源(用computation budget 来描述可能更形象). 用稍微正式点的语言描述: 已知:一个数据…
三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关.关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. PCA的主要算法如下: 组织数据形式,以便于模型…
降维之pca算法
pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的. 将XX中的数据进行零均值化,即每一列都减去其均值. 计算协方差矩阵C=1mXTXC=1mXTX 求出CC的特征值和特征向量 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P Y=XPY=XP就是降维到k维后的数据. 代码: # coding=utf- import matplotlib.p…
k邻近算法(KNN)实例
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据.这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类. 如果K=3,绿色圆点的最邻近的3…
PCA算法学习(Matlab实现)
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降…
OpenCV学习(35) OpenCV中的PCA算法
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html 对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = p*q维的向量空间,比如100*100的灰度图像,它的向量空间为100*100=10000.下图是一个3*3的灰度图和表示它的向量表示: 该向量为行向量,共9维,用变量表示就是[v0, v1, v2, v3, v4, v5, v6, v7, v8],其中v0...v8,的范围都是0-255. …
我所认识的PCA算法的princomp函数与经历 (基于matlab)
我接触princomp函数,主要是因为实验室的项目需要,所以我一接触的时候就希望快点学会怎么用. 项目中需要利用PCA算法对大量数据进行降维. 简介:主成分分析 ( Principal Component Analysis , PCA )或者主元分析.是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题.计算主成分的目的是将高维数据投影到较低维空间. 对于银行后台存储的大量数据进行分析,并不一件易事,由于每个人的信息属性众多,辨别起来颇为费力…