学长小清新题表之UOJ 14.DZY Loves Graph 题目描述 \(DZY\)开始有 \(n\) 个点,现在他对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 \(1\)开始编号)有可能的三种情况: \(Add\ a\ b:\) 表示在 \(a\) 与 \(b\) 之间连了一条长度为 \(i\)的边(注意,\(i\)是操作编号).保证 \(1≤a,b≤n\). \(Delete\ k:\) 表示删除了当前图中边权最大的\(k\)条边.保证$ k$一定不会比…
学长小清新题表之UOJ 180.实验室外的攻防战 题目描述 时针指向午夜十二点,约定的日子--\(2\)月\(28\)日终于到来了.随着一声枪响,伏特跳蚤国王率领着他的跳蚤大军们包围了 \(picks\) 博士所在的实验室. 当然,\(picks\) 博士不会坐以待毙,他早就率领着他的猴子们在实验室外修筑了许多的坚固防御工事. 经过跳蚤侦察兵的勘察,跳蚤国王发现 \(picks\) 博士的防御工事有着 \(n\) 处薄弱点,于是他把他的跳蚤大军分成了 \(n\) 支小队,并打算让它们分别进攻每一…
学长小清新题表之UOJ 31.猪猪侠再战括号序列 题目描述 大家好我是来自百度贴吧的_叫我猪猪侠,英文名叫\(\_CallMeGGBond\). 我不曾上过大学,但这不影响我对离散数学.复杂性分析等领域的兴趣:尤其是括号序列理论,一度令我沉浸其中,无法自拔.至于\(OI\)算法竞赛,我年轻时确有参加,虽仅获一枚铜牌,但我素性淡泊,毫不在意,毕竟那所谓\(FFT\).仙人掌之类,只是些雕虫小技罢了,登不上大雅之堂的:只有括号序列才会真正激发我的研究热情. 我曾天真地以为,凭借我的学识与才能,足可以…
[UOJ#12][UER #1]猜数 试题描述 这一天,小Y.小D.小C正在愉快地玩耍. 小Y是个数学家,他一拍脑袋冒出了一个神奇的完全平方数 n. 小D是个机灵鬼,很快从小Y嘴里套出了 n的值.然后在脑内把 n写成了 a×b的形式.其中 a,b 都是正整数. 小C是个八卦狂,他发现小D从小Y那里获知了神奇的东西,于是死缠烂打追问小D.最后小D说道:“我可以告诉你正整数 g和 l的值,我保证 ab=gl=n且 a,b都是 g 的倍数.但是 a,b 我可不能告诉你.” 这可急坏了小C.他决定退而求…
题目: DZY开始有 \(n\) 个点,现在他对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 \(1\) 开始编号)有可能的三种情况: Add a b: 表示在 \(a\) 与 \(b\) 之间连了一条长度为 \(i\) 的边(注意,\(i\)是操作编号).保证 \(1 \leq a, b \leq n\). Delete k: 表示删除了当前图中边权最大的k条边.保证 \(k\) 一定不会比当前图中边的条数多. Return: 表示撤销第 \(i-1\) 次操…
http://uoj.ac/problem/14 题解很好的~ 不带路径压缩的并查集能保留树的原本形态. 按秩合并并查集可以不用路径压缩,但是因为此题要删除,如果把深度当为秩的话不好更新秩的值,所以把子树大小当为秩. 合并直接合并,删除直接删除,每条边只会被添加进树一次,至多被删除一次. 离线特殊考虑一下return的情况就可以了QwQ #include<cstdio> #include<cstring> #include<algorithm> using namesp…
http://uoj.ac/problem/14 由于加入的边权递增,可以直接运行kruskal并支持撤销,但这样如果反复批量删边和撤销,时间复杂度会退化,因此需要对删边操作加上延时处理,只有在删边后下一个操作不是撤销时才执行删边.由于有撤销,并查集需要按秩合并且不路径压缩. #include<bits/stdc++.h> typedef long long i64; ; int _(){ int x; scanf("%d",&x); return x; } int…
传送门 题意简述: 要求支持以下操作: 在a与b之间连一条长度为i的边(i是操作编号):删除当前图中边权最大的k条边:表示撤销第 i−1次操作,保证第1次,第i−1 次不是撤回操作. 要求在每次操作后输出当前图的最小生成树边权和. 思路:由于边权为当前操作编号因此相当于边是单调加入的,也就是说我们可以直接上kruskalkruskalkruskal的合并方法. 关键在于怎么维护这几个操作. 加边操作:加入一条边. 删除操作:删掉最近加入的kkk条边. 撤回加边操作:删掉最近加入的一条边 撤回删除…
我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 = 1; F2 = 1; Fn = Fn - 1 + Fn - 2 (n > 2). DZY loves Fibonacci numbers very much. Today DZY gives you an array con…
[Luogu3676]小清新数据结构题(动态点分治) 题面 洛谷 题解 先扯远点,这题我第一次看的时候觉得是一个树链剖分+线段树维护. 做法大概是这样: 我们先以任意一个点为根,把当前点看成是一棵有根树.比方说以\(1\)为根. 那么,在询问以\(p\)为根的时候的答案,我们看看哪些子树发生了变化. 发现真正会产生变化的只有\(1..p\)这条链上的所有点,其它点的贡献和以\(1\)为根时的贡献是一样的. 考虑这条链上的所有点的贡献变成了什么,假设这条链上的所有点分别是\(c_1,c_2...,…