<DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks>研读笔记 论文标题:DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks 来源:ICCV 2017 摘要: 尽管手机中的嵌入式照相机的性能在快速地发展,但是它们所受到的物理限制——较小的感光器件,精简的镜头和缺少特定的硬件——制约着手机的相机拍出与DSLR(单反)同…
目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 改进的思路 2.4 进一步创新 2.5 本文贡献 三.PointConv 3.1 2D图像与3D点云的区别 3.2 3D连续卷积 -> 点云卷积 3.2.1 原始PointConv 3.2.2 高效的PointConv 3.2.3 PointDeConv 四.实验 4.1 在ModelNet40上的…
Very Deep Convolutional Networks for Large-Scale Image Recognition 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/39736509 这篇论文是今年9月份的论文[1],比較新,当中的观点感觉对卷积神经网络的參数调整大有指导作用,特总结之.关于卷积神经网络(Convolutional Neural Network, CNN),笔者后会作文阐述之,读者若心急则或可用谷歌百度一…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zisserman[§] Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk 用于大规模图像识别的深度卷积网络 Karen Simonyan[‡] &am…
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加灵活,分析到卷积网络对尺寸并没有要求,固定尺寸的要求完全来源于全连接层部分,因而借助空间金字塔池化的方法来衔接两者,SPPNet在检测领域的重要贡献是避免了R-CNN的变形.重复计算等问题,在效果不衰减的情况下,大幅提高了识别速度.   用于视觉识别的深度卷积网络空间金字塔池化方法 Spatial…
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun  The 13th European Conference on Computer Vision (ECCV), 2014 声明:本文所有图片均来自原始文章,自己的理解也未必正确,请查看原图并拍砖 本文的两个亮点: 1. 多尺度训练CN…
2014-VGG-<Very deep convolutional networks for large-scale image recognition>翻译 原文:http://xueshu.baidu.com/s?wd=paperuri%3A%282801f41808e377a1897a3887b6758c59%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.…
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc…
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能捕获具有高度非线性的网络结构,导致学习到一个局部最优的节点向量表示. (2) 主要贡献 Contribution: 提出一个半监督的深度模型SDNE,包含多个非线性层,同时优化一阶和二阶相似度的目标函数来保留原始网络的局部和全局网络结构,因此可能能够捕获高度非线性的网络结构. (3) 算法原理 简单…