Hello 2019 F 莫比乌斯反演 + bitset】的更多相关文章

https://codeforces.com/contest/1097/problem/F 题意 有n个多重集,q次询问,4种询问 1. 将第x个多重集置为v 2. 将第y和z多重集进行并操作,并赋值给x 3. 将第y和z多重集进行乘操作,并赋值给x,乘操作:将y的每一个元素和z的每个元素的gcd放进多重集中 4. 询问第x个多重集中有多少个v,并将个数%2输出 题解 因为个数%2,所以可以考虑用bitset 操作1需要将一个数的因数放进x中,这样两个数相与就能得出两个数的公因数,方便操作3处理…
传送门 发现自己对mobius反演的理解比较浅显-- 首先我们只需要维护每一个数的出现次数\(\mod 2\)的值,那么实际上我们只需要使用\(bitset\)进行维护,每一次加入一个数将其对应次数异或\(1\).那么\(2\)操作就相当于将集合\(x\)对应的\(bitset\)赋值为\(y\)与\(z\)的异或和. 看到\(3\)操作中的gcd,考虑莫比乌斯反演.我们在加入一个数到集合中的时候,不是加入它本身,而是加入它的所有因子.这样我们的\(3\)操作的实质就是一个按位与操作了. 对于\…
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注:本题解大部分摘自Imagine大佬提供在洛谷的题解 我们设$f(x)$表示最小循环节长度为x的合法序列数,那么有$ans=\sum_{d|gcd(n,m)}\frac{1}{d}f(d)$ 这是因为最小循环节为d的序列对应的环会被计算d次,比如 0101,最小循环节长度为 2(循环节为 01),其对…
Description 你需要维护 \(n\) 个可重集,并执行 \(m\) 次操作: 1 x v:\(X\leftarrow \{v\}\): 2 x y z:\(X\leftarrow Y \cup Z\): 3 x y z:\(X \leftarrow \{\gcd(a, b)\ |\ a\in Y, b\in Z\}\): 4 x v:询问 \(v\) 在 \(X\) 中出现次数 \(\bmod 2\) 的结果. Hint \(1\le n\le 10^5, 1\le m\le 10^6…
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌斯反演,详见这篇博客:初学莫比乌斯反演. 推式子 下面让我们来推式子. 首先,我们采用解决这种问题的常用套路,来枚举\(gcd\),就能得到这样一个式子: \[\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\fra…
Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\),其中\(1\leq a\leq n,1\leq b \leq m\)且 \(k\) 的因子数 \(\leq P\) 思路 \(g\left(x\right)\) 表示 \(gcd\left(a, b\right) | x\) 的对数 \(f\left(x\right)\) 表示 \(gcd\left…
Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\(1 \leq x,y \leq n\)且 \(p\)是质数 思路 \(g\left(x\right)\) 表示 \(gcd\left(a, b\right) | x\) 的对数 \(f\left(x\right)\) 表示 \(gcd\left(a, b\right) = x\) 的对数 根据莫比…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
链接:https://ac.nowcoder.com/acm/contest/549/J来源:牛客网 题目描述 小A最近开始研究数论题了,这一次他随手写出来一个式子,∑ni=1∑mj=1gcd(i,j)2∑i=1n∑j=1mgcd(i,j)2,但是他发现他并不太会计算这个式子,你可以告诉他这个结果吗,答案可能会比较大,请模上1000000007.输入描述:一行两个正整数n,m一行两个正整数n,m输出描述:一行一个整数表示输出结果一行一个整数表示输出结果   输入:2 2输出:7 1=<n,m<…
狄利克雷卷积&莫比乌斯反演总结 Prepare 1.\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\). 2.\(a|b\)指\(b\)被\(a\)整除. 3.一些奇怪常见的函数: \(1(n)=1\) \(id(n)=n\) \(\sigma(n)=n的约数和\) \(d(n)=n的约数个数\) \(\epsilon(n)=[n==1]\) 狄利克雷卷积 数论函数 数论函数指一类定义域是正整数,值域是一个数集的函数. 加法:逐项相加就可以辣\((f+g)(x)=f…