[BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有的金券. 设dp[i]表示第i天卖出所有金券的能够得到的钱数.则有: \[dp[i]=max(dp[i-1],\frac{dp[j]}{A[j] \times R[j]+B[j] } \times (A[i] \times R[j]+B[i])) (0 \leq j < i)\] 意义是第j天按R[…
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5541  Solved: 2228[Submit][Status][Discuss] Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金…
传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[i]$表示第$i$天最多能得到的钱在这一天可以换成多少$A$卷 枚举使用哪一天留下的卷,按这一天的汇率换成钱来更新最大钱数 再用这个钱数更新$f[i]$ 这样是$O(n^2)$的 #include <iostream> #include <cstdio> #include <al…
这题n2算法就是一个维护上凸包的过程. 也可以用CDQ分治做. 我的CDQ分治做法和网上的不太一样,用左边的点建立一个凸包,右边的点在上面二分. 好处是思路清晰,避免了凸包的插入删除,坏处是多了一个log. 这题数据很水,同时注意精度. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<ctime&…
题目大意:太长了略 splay调了两天一直WA弃疗了 首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖 反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了 容易得到方程 $dp[i]=max(dp[i-1],a[i]*\frac{dp[j]*rate[j]}{rate[j]*a[j]+b[j]}+b[i]*\frac{dp[j]}{rate[j]*a[j]+b[j]})$ 显然是要用凸优化了 splay非常无脑,splay维护此题的凸包,需要找前驱,删前驱…
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 K 天中 A券 和 B券 的 价值分别为 AK 和 BK(元/单位金券).为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法 .比例交易法分为两个方面:(a)卖出金券:顾客提…
首先,设f[x]表示x天能获得的A券最大值,有动规方程: $f[i]=max\{f[j]*A[i]+f[j]*B[i]/R[j]\}*R[i]/(R[i]*A[i]+B[i])$, 设 $j<k$ ,$f[j]>f[k]$ $\Rightarrow (f[j]/R[j]-f[k]/R[k])/(f[j]-f[k]) \leftarrow A[i]/B[i]$ 令$g[i]=f[i]/R[i]$,则有$(g[j]-g[k])/(f[j]-f[k]) \leftarrow A[i]/B[i]$ 将…
题意: 略 见上一篇 题解: 方程还是那个方程f[i]=A[i] * X[j] + B[i] * Y[j]. 化简为Y[i]=(-A[i]/B[i]) * X[i] + f[i]/B[i]这一坨: 既然这个斜率不单调,那排个序让它单调不即可了: 排序之后的问题就是,在i前面更新i的点不一定能够更新i.而应该用来更新i的点说不定还在i的后面: 那么这时候就是用CDQ分治解决. 经典的四步先贴上来: 1.将操作依照时间划分为两个子区间. 2.递归处理左区间的改动与询问. 3.用左区间的改动处理右区间…
BZOJ1492:[NOI2007]货币兑换 题目传送门 [问题描述] 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和B纪念券(以下简称B券).每个持有金券的顾客都有一个自己的 帐户.金券的数目可以是一个实数.每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第K天中A券 和B券的价值分别为AK和BK(元/单位金券). 为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法. 比例交易法分为两个…
首先每次买卖一定是在某天 $k$ 以当时的最大收入买入,再到第 $i$ 天卖出,那么易得方程: $$f_i = \max \{\frac{A_iRate_kf_k}{A_kRate_k + B_k} + \frac{B_if_k}{A_kRate_k + B_k}\}$$ 再令 $$\left\{\begin{aligned} x_k = \frac{Rate_kf_k}{A_kRate_k + B_k} \\ y_k = \frac{f_k}{A_kRate_k + B_k}\end{alig…