codevs1099 字串变换】的更多相关文章

题目描述 Description 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ …. 例如:A$='abcd' B$='xyz' 变换规则为: ‘abc’->‘xu’ ‘ud’->‘y’ ‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为: ‘abcd’->‘xud’->‘xy’-…
/* 最少步数问题 妥妥的Bfs 很显然队列里存的是串(可能存个数也可以 就像8数码那样) 然后每次队首元素弄出来 能换的都换一遍 最后每次换完的新串入队前先判断到头了没 最后说一句 String大法好0.0 */ #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> using namespace std; ,head,tail,t[]; ],sr[],q[]; in…
1099 字串变换 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold   题目描述 Description 已知有两个字串 $A$, $B$ 及一组字串变换的规则(至多6个规则): $A1$ -> $B1$ $A2$ -> $B2$ 规则的含义为:在$ A$中的子串 $A1$ 可以变换为 $B1$.$A2$ 可以变换为 $B2$ …. 例如:$A='abcd' B='xyz'$ 变换规则为: $‘abc’->‘xu’ ‘u…
题目描述 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ …. 例如:A$='abcd'B$='xyz' 变换规则为: ‘abc’->‘xu’‘ud’->‘y’‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为: ‘abcd’->‘xud’->‘xy’->‘xyz’ 共进行了三…
题目描述 Description 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ -. 例如:A$='abcd' B$='xyz' 变换规则为: 'abc'->'xu' 'ud'->'y' 'y'->'yz' 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为: 'abcd'->'xud'->'xy'-…
题二 字串变换 (存盘名: NOIPG2) [问题描述]: 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ …. 例如:A$='abcd' B$='xyz' 变换规则为: ‘abc’->‘xu’ ‘ud’->‘y’ ‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为: ‘abcd’->‘x…
一道看似非常水的题 大意 :将一个字串 经过几种变换规则变为给定的另一个子串 ,求最小操作数. code[vs] 传送门 洛谷传送门 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A中的子串 A1 可以变换为 B1.A2 可以变换为 B2 -. 例如:A='abcd'B='xyz' 变换规则为: 'abc'->'xu''ud'->'y''y'->'yz' 则此时,A 可以经过一系列的变换变为 B,其变换…
题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B2 -. 例如:A='abcd'B='xyz' 变换规则为: 'abc'->'xu''ud'->'y''y'->'yz' 则此时,A 可以经过一系列的变换变为 B,其变换的过程为: 'abcd'->'xud'->'xy'->'xyz' 共进行了三次变换,使得 A 变换为B.…
###题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B2 -. 例如:A='abcd'B='xyz' 变换规则为: 'abc'->'xu''ud'->'y''y'->'yz' 则此时,A 可以经过一系列的变换变为 B,其变换的过程为: 'abcd'->'xud'->'xy'->'xyz' 共进行了三次变换,使得 A 变换…
题目描述 已知有两个字串  A,B  及一组字串变换的规则(至多6个规则): A1−>B1 A2−>B2 规则的含义为:在  A$中的子串  A1可以变换为可以变换为B1.A2可以变换为可以变换为B2  -. 例如:A==′abcd′B='xyz' 变换规则为: 'abc'-> 'xu' 'ud'-> 'y' 'y'-> 'yz' 则此时,A可以经过一系列的变换变为可以经过一系列的变换变为B,其变换的过程为: 'abcd'-> 'xud'-> 'xy'->…