https://www.baidu.com/link?url=LnDjrhLG7Fx6YVgR9WljUILkPZrIzOR402wr2goIS-ARtDv9TwZ2VYVbY74fyVpQlE22nZsMSJLhvNXhxnPNWQpKtPUlBk4SGM8EGjBX1WK&wd=&eqid=b9f03dd400028a0f000000025bc45630 https://blog.csdn.net/jinesse/article/details/50553870…
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,…
目录 Logistic 回归 本章内容 回归算法 Logistic 回归的一般过程 Logistic的优缺点 基于 Logistic 回归和 Sigmoid 函数的分类 Sigmoid 函数 Logistic 回归分类器 图5-1 两种坐标尺度下的 Sigmoid 函数图 基于最优化方法的最佳回归系数确定 梯度上升法 图5-2 梯度上升图 梯度下降算法 训练算法:使用梯度上升找到最佳参数 图5-3 数据集图 梯度上升算法的伪代码 程序5-1 Logistic 回归梯度上升优化算法 分析数据:画出…
交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出[ a=σ(z), where z=wx+b ]. 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数: 然后更新w.b: w <—— w - η* ∂C/∂w = w - η *…
1.线性回归 回归的目的是预测数值型数据的目标值.目标值的计算是通过一个线性方程得到的,这个方程称为回归方程,各未知量(特征)前的系数为回归系数,求这些系数的过程就是回归. 对于普通线性回归使用的损失函数一般为平方误差.把其用最小二乘法进行优化得到的关于系数w求导所得到的矩阵形式的表达式求得的w便为最优解了. 线性回归可以参考:https://www.cnblogs.com/pinard/p/6004041.html 2.Logistic回归 逻辑回归假设数据服从伯努利分布,是一种广义的线性回归…
一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X59列; (2)4000行数据对应着4000个角色,ID编号从1到4001; (3)59列数据中, 第一列为角色ID,最后一列为分类结果,即label(0.1两种),中间的57列为角色对应的57种属性值. 二.思路分析及实现 2.1 思路分析 这是一个典型的二分类问题,结合课上所学内容,决定采用Log…
1.输出: 线性回归输出是连续的.具体的值(如具体房价123万元) 回归 逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题 分类 2.假设函数 线性回归: θ数量与x的维度相同.x是向量,表示一条训练数据 逻辑回归:增加了sigmoid函数 逻辑斯蒂回归是针对线性可分问题的一种易于实现而且性能优异的分类模型,是使用最为广泛的分类模型之一. sigmoid函数来由 假设某件事发生的概率为p,那么这件事不发生的概率为(1-p),我们称p/(1-p)为这件…
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid函数分类 4.2 基于最优化方法的最佳回归系数确定 4.2.1 梯度上升算法: 4.2.2 测试算法:使用梯度上升算法找到最佳参数 4.2.3 分析数据:画出决策边界 4.2.4 训练算法:随机梯度上升 4.3 示例1:从疝气病症预测病马的死亡率 4.4 示例2:从打斗数和接吻数预测电影类型(数据自…
本来想发在知乎专栏的,但是文章死活提交不了,我也是醉了,于是乎我就干脆提交到CNBLOGS了. 前言 前段时间我们介绍了Logistic的数学原理和C语言实现,而我呢?其实还是习惯使用Matlab进行计算的,而且是不带C的Matlab.(主要我们都用Windows) 那为什么要用SQL实现呢?(准确的说是PL/SQL) 因为我发现数据一次性加载进内存里面太大了,直接在SELECT的时候OutOfMemory了(其实数据是勉强能装进内存的,只是SELECT的时候产生的对象太多) 更主要的原因是因为…
Logistic回归模型 1. 模型简介: 线性回归往往并不能很好地解决分类问题,所以我们引出Logistic回归算法,算法的输出值或者说预测值一直介于0和1,虽然算法的名字有“回归”二字,但实际上Logistic回归是一种分类算法(classification y = 0 or 1). Logistic回归模型: 课堂记录(函数图像): 函数h(x)的输出值,我们把它看做,对于一个输入值x,y = 1的概率估计.比如说肿瘤分类的例子,我们有一个特征向量x,似的h(x)的输出为0.7,我们的假设…