题意 题目链接 Sol 比赛结束后才调出来..不多说啥了,就是因为自己菜. 裸的up-down dp,维护一下一个点上下的直径就行,一开始还想了个假的思路写了半天.. 转移都在代码注释里 毒瘤题目卡空间 #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define LL long long…
题意 题目链接 Sol 直接拿set维护\(li\)连续段.因为set内的区间互不相交,而且每个线段会被至多加入删除一次,所以复杂度是对的. #include<bits/stdc++.h> #define Pair pair<int, int> #define MP make_pair #define fi first #define se second using namespace std; const int MAXN = 1e6 + 10, INF = 2147483646…
题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define int long long #define LL long long #define ull unsigned…
题目: 题解: bzoj 3302 == 2447 == 2103 三倍经验 首先我们考虑枚举两个中心的位置,然后统计答案. 我们发现,一定有一部分点离第一个中心更近,另一部分点离第二个中心更近 如果将两部分点分别染成两种颜色,容易发现一定有且只有一条边两端的颜色不相同 所以我们考虑枚举这条边,然后将整个树分成两个部分,然后分别求出分开的两颗树的中心,然后把两部分的代价求和来更新答案. 容易发现这样是\(n^2\)的 然后我们回头看题目,发现有奇怪的条件:深度 <= 100 这启发了我们从深度的…
老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 \(1\) 个点则链长视为 \(0\)). 输入输出格式 输入格式: 第一行:一个 \(n\) 表示节点个数. 接下来 \(n-1\) 行每行三个整数 \(u,v,c\) 表示 \(u,v\) 之间有一条 \(c\) 的边. 输出格式: 输出一个整数表示最大的乘积. 输入输出样例 输入样例: 5 1…
题意 给一棵树,你可以匹配有边相连的两个点,问你这棵树的最大匹配时多少,并且计算出有多少种最大匹配. N≤1000,其中40%的数据答案不超过 108 题解 显然的树形DP+高精. 这题是作为考试题考的,因为记得有一次考试,状态用两个数组存. 所以看到这题瞬间想到状态dp[i][0/1]代表以i为根的子树不选/选i点的最大匹配数. f[i][0/1]代表以i为根的子树中不选/选i形成最大匹配的方案数. 然后方程改了半天:而且极长所以看代码吧. TM还要加高精... (第一个点挂了,特判过的) #…
题意:有两个小孩玩游戏,每个小孩可以选择一个起始点,并且下一个选择的点必须和自己选择的上一个点相邻,问两个选的点权和的最大值是多少? 思路:首先这个问题可以转化为求树上两不相交路径的点权和的最大值,对于这种问题,我们有两种想法: 1:树的直径,受之前HDU多校的那道题的启发,我们先找出树的直径,然后枚举保留直径的哪些部分,去找保留这一部分的最优解,去更新答案. 代码: #include <bits/stdc++.h> #define INF 1e18 #define LL long long…
原题: ZOJ 3684 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3684 题意: 给你一棵树,树的根是树的中心(到其他点的最远距离最小).现在你要破坏所有叶子节点到根节点的连通,每条边破坏都需要一定能量.你有一个能量为power的武器,能破坏能量小于等于power的任何路.求最少需要的power. 解法参考博客:http://blog.csdn.net/gzh1992n/article/details/86511…
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c之间的距离就是树的直径. 用dfs也可以. 模板: ; int head[N]; int dis[N]; bool vis[N]; ,b,mxn=; struct edge { int to,w,next; }edge[N]; void add_edge(int u,int v,int w) { e…
线段树的任意一棵子树都相当于节点数与该子树相同的线段树.于是假装在树形dp即可,记忆化搜索实现,有效状态数是logn级别的. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<map> using namespace std; #define…