首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[转] pytorch指定GPU
】的更多相关文章
Pytorch指定GPU的方法总结
Pytorch指定GPU的方法 改变系统变量 改变系统环境变量仅使目标显卡,编辑 .bashrc文件,添加系统变量 export CUDA_VISIBLE_DEVICES=0 #这里是要使用的GPU编号 在程序开头设置 os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3' 在运行程序时指定 # 运行程序时使用命令行,来设置该程序可见的gpu: CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py 使用torch.c…
[转] pytorch指定GPU
查过好几次这个命令,总是忘,转一篇mark一下吧 转自:http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU. 有如下两种方法来指定需要使用的GPU. 1. 类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES. 1.1 直接终端中设定: CUDA_VISIBLE_DEVICES=1 python my_script.py 1.2…
pytorch 指定GPU训练
# 1: torch.cuda.set_device(1) # 2: device = torch.device("cuda:1") # 3:(官方推荐)import os os.environ["CUDA_VISIBLE_DEVICES"] = '1' (同时调用两块GPU的话) os.environ["CUDA_VISIBLE_DEVICES"] = '1,2'…
Pytorch多GPU并行处理
可以参数2017coco detection 旷视冠军MegDet: MegDet 与 Synchronized BatchNorm PyTorch-Encoding官方文档对CGBN(cross gpu bn)实现 GPU捉襟见肘还想训练大批量模型? 在一个或多个 GPU 上训练大批量模型: 梯度累积 充分利用多 GPU 机器:torch.nn.DataParallel 多 GPU 机器上的均衡负载 : PyTorch-Encoding 的 PyTorch 包,包括两个模块:DataParal…
pytorch 多GPU训练总结(DataParallel的使用)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_40087578/article/details/87186613这里记录用pytorch 多GPU训练 踩过的许多坑 仅针对单服务器多gpu 数据并行 而不是 多机器分布式训练 一.官方思路包装模型 这是pytorch 官方的原理图 按照这个官方的原理图 修改应该参照 https://blog.csdn.net/qq…
Pytorch 多 GPU 并行处理机制
Pytorch 的多 GPU 处理接口是 torch.nn.DataParallel(module, device_ids),其中 module 参数是所要执行的模型,而 device_ids 则是指定并行的 GPU id 列表. 而其并行处理机制是,首先将模型加载到主 GPU 上,然后再将模型复制到各个指定的从 GPU 中,然后将输入数据按 batch 维度进行划分,具体来说就是每个 GPU 分配到的数据 batch 数量是总输入数据的 batch 除以指定 GPU 个数.每个 GPU 将针对…
Pytorch多GPU训练
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新主设备上的模型参数 代码实现(以Minist为例) #!/usr/bin/python3 # coding: utf-8 import torch from torchvision import datasets, transforms…
指定Gpu range系列函数
tensorflow指定GPU训练 import os os.environ[CUDA_VISIABLE_DEVICES] = '0,1'记住DEVICES是复数 range()返回的是range object,而np.nrange()返回的是numpy.adarray() 两者都是均匀地(evenly)等分区间:range尽可用于迭代,而np.arange作用远不止于此,它是一个序列,可被当做向量使用.range()不支持步长为小数,np.arange()支持步长为小数 两者都可用于迭代 两者…
查看GPU占用率以及指定GPU加速程序
GPU占用率查看: 方法一:任务管理器 如图,GPU0和GPU1的占用率如下显示. 方法二:GPU-Z软件 下面两个GPU,上面是GPU0,下面是GPU1 sensors会话框里的GPU Load就是占用率 大家可以查看GPU0和GPU1的使用与否和使用率 方法三:终端查看 在运行中输入cmd,打开终端 输入cd C:\Program Files\NVIDIA Corporation\NVSMI 回车 输入nvidia-smi 输出为 其中GPU下的0和1 指不同GPU,Memory…
TensorFlow指定GPU使用及监控GPU占用情况
查看机器上GPU情况 命令: nvidia-smi 功能:显示机器上gpu的情况 命令: nvidia-smi -l 功能:定时更新显示机器上gpu的情况 命令:watch -n 3 nvidia-smi 功能:设定刷新时间(秒)显示GPU使用情况 在终端执行程序时指定GPU CUDA_VISIBLE_DEVICES=1 python your_file.py 这样在跑你的网络之前,告诉程序只能看到1号GPU,其他的GPU它不可见 可用的形式如下: CUDA_VISIBLE_DEVICES…