[总结] Min-Max容斥学习笔记】的更多相关文章

min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i) \] 一些定义 \(\max (S),\min (S)\)表示分别集合\(S\)的最大,最小元素 套路式子 \[ \max(S)=\sum_{\varnothing\not=S\subseteq T}(-1)^{|T|-1}\min(T) \] 证明 首先我…
min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in S}(-1)^{|T|-1}\min(T)\] 这个东西叫 min-max容斥. 证明可以拿二项式反演证 例题 hdu4336 Card Collector 题目 有 \(n\) 种卡片,每一秒都有 \(P_i\) 的概率获得一张第 \(i\) 种卡片,求每张卡片都至少有一张的期望时间. 记 \(…
基本形式 \[ \max(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T) \] 证明 不提供数学证明. 简要讲一下抽象理解伪证: 考虑从大到小排名为 \(i\) 的数,这个数会作为集合 \(T\) 的最小值出现时,那么 \(T\) 剩下的所有值都是从大于它的数中选取的.那么选取方案就是 \(\binom{i-1}{|T|-1}\). 如果 \(i=1\),也就是 \(a_i = \max(S)\),那么它只会被加上…
有一个需求要为document对象绑定click事件来是想隐藏提示框的交互功能,于是小白写了如下代码: document.onclick = function(e) { e.preventDefault(); if(e.target !== document.getElementById('myinput')) { hidePageAlert(); } } function hidePageAlert() { //隐藏提示框 } 同事小铭看了看代码说: “首先,你为document 绑定了cli…
模板方法模式(Template Method):父类中定义一组操作算法骨架,而降一些实现步骤延迟到子类中,使得子类可以不改变父类的算法结构的同时可重新定义算法中某些实现步骤. 项目经理体验了各个页面的交互功能,发现每个页面的弹出框样式都不太一致,有的是高度高一些,有的是字体大了些,有的是按钮歪了些. 于是我们就需要将这些页面中的弹出框归一化. 我们首先要做的就是创建一个基本提示框基类,然后其他提示框类只需要在继承的基础上,拓展自己所需即可了吧,这样日后需求再变动我们修改基础类就可以使所有提示框的…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k}\) 其中 \(\oplus\) 是二元位运算中的一种. 实现 \(or\) 运算 构造 \(fwt[a]_i = \sum_{j|i=i} a_j\) 则 \(\begin{aligned} fwt[a] \times fwt[b] &= \left(\sum_{j|i=i} a_j\right)…
$\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \min(T)$ 对于上述式子,可以简单的理解. 对于$S$中的每一项,其中的最大值为第$i$项 由于$|T|$非空,一共有$2^{|S|}-1$个$T$,其中,对于非最大值的任意一项,都包含至少一个比其大的元素 所以这些元素的选择情况构成了$2^{k}$幂,其中$|T|$的奇偶分布…
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j=y)+\sum_i\sum_jj*P(i=x,j=y) \] \[=\sum_ii*P(i=x)+\sum_jj*P(j=y) \] \[=E(x)+E(y) \] Min - Max 容斥: 我们现在有一个全集 \(U= \lbrace{a_1,a_2,a_3,...,a_n}\rbrace\)…
Problem Description 在平面上有一个n*n的网格,即有n条平行于x轴的直线和n条平行于y轴的直线,形 成了n*n个交点(a,b)(1<=a<=n,1<=b<=n).现在从(0,0)出发,问能形成多少条不同的射线,使其除了经过(0,0)还经过至少一个其他的交点. Input 输入包含多组测试样例(40组左右),处理到文件结束,每组测试包含一个数N(N <= 100000) Output 每组数据输出射线的数目 Sample Input 2 3 Sample O…