LG P4213【模板】杜教筛(Sum)】的更多相关文章

传送门 分析 我们知道 $\varphi * 1 = id$ $\mu * 1 = e$ 杜教筛即可 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<cctype> #include<cmath> #include<cstdlib> #include<…
杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 给定\(f(n)\), 现要求\(S(n)=\sum_{i=1}n f(i)\). 定义卷积运算 \((f*g)(n) = \sum_{d | n} f(d) g(\frac{n}{d})\). 如果存在\(g(n)\), 满足\(f*g=h\), 且\(g\)和\(h\)都能 \(O(1)\) 求…
https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块里的莫比乌斯前缀和刚好用第二问来做 杜教筛的时候先线性筛出前 N 个数的莫比乌斯函数前缀和,其余的用 map 记忆化搜索,实测 N 取 3670000 最佳(其实我只测了3次) #include <bits/stdc++.h> using namespace std; typedef unsign…
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; int t, n, cnt; bool v[maxn]; short mu[maxn]; int isp[maxn], phi[maxn]; LL sum1[maxn]; int sum2[maxn]; unordered_map<int,LL> dp1; unordered_map<int…
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i=1}^n \mu(i)$$ 输入输出格式 输入格式: 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 输出格式: 一共T行,每行两个用空格分隔的数ans1,ans2 输入输出样例 输入样例#1: 复制 6 1 2 8 13 30 2333 输出样例#1…
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \frac{a}{gcd}, \frac{b}{gcd}\),然后\(\mu\)代入,就是 \[ \sum_{d=1}^{\sqrt{n}}\mu(d) \sum_i \sum_j \sum_k [ijk \le \frac{n}{d^2}] \] 问题就是怎么求后面的式子了 一开始我是 \[ f(n) = \s…
题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}-1$ 题解:杜教筛,用来求$\sum\limits_{i=1}^nf(i)$的,其中$f$是某个特殊函数. 若我们可以找到一个函数$g$,使得$g,f*g$两个函数的前缀和十分好算($g*f$表示$g$和$f$的狄利克雷卷积),就可在$O(n^{\frac 23})$的复杂度内求出我们要的东西.令$…
\(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varphi(i) \end{aligned}\) \(\begin{aligned} ans_2=\sum_{i=1}^n \mu(i) \end{aligned}\) \(\color{#0066ff}{输 入 格 式}\) 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N…
思路:杜教筛 提交:\(2\)次 错因:\(\varphi(i)\)的前缀和用\(int\)存的 题解: 对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题. 先要构造\(h=f*g\),并且\(h\)的前缀和易求,\(g\)的区间和易求. 具体地: \[\sum_{i=1}^{n}h(i)=\sum_{i=1}^{n}\sum_{d|i}g(d)\cdot f(\frac{i}{d})\] \[\sum_{i=1}^{n}h(i)=\sum_{d=1}^{n}g(d)\…
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. 需要使用杜教筛. 杜教筛可以在非线性时间里求出一个积性函数的前缀和. 借这里先写一些杜教筛内容...或许以后会补总结(雾 最开始扔积性函数: \(\mu(n)\),莫比乌斯函数 \(\phi(n)\),欧拉函数. \(d(n)\),约数个数. \(\sigma(n)\),约数和函数. \(\eps…