ACM-01背包问题-Python】的更多相关文章

版权声明:本文为博主原创文章,转载请注明转自 http://www.cnblogs.com/kdxb/p/6140625.html #!/usr/bin/env python # -*- coding:utf-8 -*- class bag(): def __init__(self,weight,value): self.weight = weight self.value = value def knapsack(self, full_weight):#weight value存数组 resu…
def f(i,j): while i>=0: if i==0 and j>=l[i][0]: return l[i][1] elif i==0 and j<l[i][0]: return 0 else: return max(f(i-1,j-l[i][0])+l[i][1],f(i-1,j))i = int(input()) # 编号j = int(input()) # 总承重l = []for item in range(i): str_in = input("please…
import random import math import matplotlib.pyplot as plt import numpy as np import time def init(b_=700,xSize_=200,iteration_=1000,c1_=0.5,c2_=0.5,w_=0.8): global a,c,b,Dim,xSize,iteration,c1,c2,w,A,C,x,v,xbest,fxbest,gbest,fgbest a = [90, 33, 94, 6…
01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题,使用动态规划来解决.n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每一个物品的重量,v=[6,3,5,4,6]是每一个物品的价值,先把递归的定义写出来: 然后自底向上实现,代码例如以下: def bag(n,c,w,v): res=[[-1 for j in range…
去年的算法课挂了,本学期要重考,最近要在这方面下点功夫啦! 1.多边形游戏-动态规划 问题描述: 多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形.每个顶点被赋予一个整数值, 每条边被赋予一个运算符“+”或“*”.所有边依次用整数从1到n编号. 游戏第1步,将一条边删除. 随后n-1步按以下方式操作: (1)选择一条边E以及由E连接着的2个顶点V1和V2: (2)用一个新的顶点取代边E以及由E连接着的2个顶点V1和V2.将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新顶…
Python基于回溯法解决01背包问题实例 这篇文章主要介绍了Python基于回溯法解决01背包问题,结合实例形式分析了Python回溯法采用深度优先策略搜索解决01背包问题的相关操作技巧,需要的朋友可以参考下 同样的01背包问题,前面采用动态规划的方法,现在用回溯法解决.回溯法采用深度优先策略搜索问题的解,不多说,代码如下: bestV=0 curW=0 curV=0 bestx=None defbacktrack(i):   globalbestV,curW,curV,x,bestx   i…
一.背包问题 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2至Wn,与之相对应的价值为P1,P2至Pn.01背包是背包问题中最简单的问题.01背包的约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性.在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况.如果不选择将其放入背包中,则不需要处理.如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况. 二.…
问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其中之一.N个物品中每一个物品,都有选择.不选择两种状态.因此,只需要对每一个物品的这两种状态进行遍历. 解是一个长度固定的N元0,1数组. 套用回溯法子集树模板,做起来不要太爽!!! 代码 '''0-1背包问题''' n = 3 # 物品数量 c = 30 # 包的载重量 w = [20, 15,…
无界背包中的状态及状态方程已经不适用于01背包问题,那么我们来比较这两个问题的不同之处,无界背包问题中同一物品可以使用多次,而01背包问题中一个背包仅可使用一次,区别就在这里.我们将 K(ω)改为 K(i,ω) 即可,新的状态表示前 i 件物品放入一个容量为 ω的背包可以获得的最大价值. 现在从以上状态定义出发寻找相应的状态转移方程.K(i−1,ω)为 K(i,ω)的子问题,如果不放第 i 件物品,那么问题即转化为「前 i−1 件物品放入容量为 ω 的背包」,此时背包内获得的总价值为 K(i−1…
拦截导弹 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 某国为了防御敌国的导弹袭击,发展中一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于等于前一发的高度.某天,雷达捕捉到敌国导弹来袭.由于该系统还在试用阶段,所以只用一套系统,因此有可能不能拦截所有的导弹.   输入 第一行输入测试数据组数N(1<=N<=10)接下来一行输入这组测试数据共有多少个导弹m(1<=m<=20)接下来…