UVA11027_Palindromic Permutation】的更多相关文章

此题不错.给你一些字字符,要求你用这些字符构成一个回文串,求字典序第k大的回文串. 首先通过给定的字符,我们可以直接判断能否构成回文串(奇数的字符不超过一种),其次可以统计每个字符在回文串的左边应该出现多少次. 然后从左到右判断每一位应该放那个字母,一边放置一遍更新即可. 我仅判断奇数次的个数为奇偶就ac了,输出的时候只输出了一个,如果有三个呢? 哈哈, 数据太水了. 召唤代码君: #include <iostream> #include <cstdio> #include <…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form. For example: Given s = "aabb", return ["abba", "baab"]. Given s = "a…
Given a string, determine if a permutation of the string could form a palindrome. For example,"code" -> False, "aab" -> True, "carerac" -> True. Hint: Consider the palindromes of odd vs even length. What difference d…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers. If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order). The replaceme…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中a[i]为第i位是i往右中的数里 第几大的-1(比他小的有几个). 其实直接想也可以,有点类似数位DP的思想,a[n]*(n-1)!也就是a[n]个n-1的全排列,都比他小 一些例子 http://www.cnblogs.com/hxsyl…
For research purpose, I've read a lot materials on permutation test issue. Here is a summary. Should be useful. Still, thanks for contributors online. P value calculation Because the actual value is one of those permutations, I would like to change t…
(M) Permutations (M) Permutations II (M) Permutation Sequence (M) Palindrome Permutation II…