spark 稠密向量和稀疏向量】的更多相关文章

Spark mlib的本地向量有两种: DenseVctor   :稠密向量   其创建方式   Vector.dense(数据) SparseVector :稀疏向量   其创建方式有两种: 方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组) 方法二:Vector.sparse(向量长度,(索引,数值),(索引,数值),(索引,数值),...(索引,数值)) 示例: 比如向量(1,0,3,4)的创建有三种方法: 稠密向量:直接Vectors.dense(1,0…
spark mlib中2种局部向量:denseVector(稠密向量)和sparseVector(稀疏向量) denseVector向量的生成方法:Vector.dense() sparseVector向量的生成方法: (1):Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组) (2):Vector.sparse(向量长度,(索引,数值),(索引,数值),...(索引,数值)) 例子:向量(5.2,0.0,5.5) 稠密向量:Vector.dense(5.2,0.0,5…
import org.apache.spark.mllib.linalg.Vectors object Test { def main(args: Array[String]) { val vd = Vectors.dense(2, 5, 8) println(vd(1)) println(vd) //向量个数,序号,value val vs = Vectors.sparse(4, Array(0, 1, 2, 3), Array(9, 3, 5, 7)) println(vs(0)) //序号…
spark-mllib 密集向量和稀疏向量 MLlib支持局部向量和矩阵存储在单台服务器,也支持存储于一个或者多个rdd的分布式矩阵 . 局部向量和局部矩阵是用作公共接口的最简单的数据模型. 基本的线性代数运算由Breeze提供. 在监督学习中使用的训练示例在MLlib中称为"标记点". 因此,向量和 矩阵,标记点是 spark-mllib基本的数据模型,也是学习sparl-mllib的基础. 局部向量 一个局部向量具有存储在单个机器上的integer整数类型的基于0的索引和doubl…
1.局部向量 Mllib支持2种局部向量类型:密集向量(dense)和稀疏向量(sparse). 密集向量由double类型的数组支持,而稀疏向量则由两个平行数组支持. example: 向量(5.2,0.0,5.5) 密集向量表示:[5.2,0.0,5.5] 稀疏向量表示:(3,[0,2],[5.2,5.5])    # 3是向量(5.2,0.0,5.5)的长度,除去0值外,其他两个值的索引和值分别构成了数组[0,2]和数组[5.2,5.5]. Vector是所有局部向量的基类,Dense-V…
不多说,直接上干货! 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mllib数理统计…
通过spark rdd 求取  特征的稀疏向量 spark 类标签的稀疏 特征向量 - bonelee - 博客园 http://www.cnblogs.com/bonelee/p/7814081.html…
http://mocom.xmu.edu.cn/article/show/58481eb2e083c990247075a5/0/1 1. /创建一个标签为1.0(分类中可视为正样本)的稠密向量标注点 scala> val pos = LabeledPoint(1.0, Vectors.dense(2.0, 0.0, 8.0)) pos: org.apache.spark.mllib.regression.LabeledPoint = (1.0,[2.0,0.0,8.0]) //创建一个标签为0.…
Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组) 方法二:Vector.sparse(向量长度,(索引,数值),(索引,数值),(索引,数值),...(索引,数值)) 示例: 比如向量(1,0,3,4)的创建有三种方法: 稠密向量:直接Vectors.dense(1,0,3,4) 稀疏…
不多说,直接上干货! Labeled point: 向量标签 向量标签用于对Spark Mllib中机器学习算法的不同值做标记. 例如分类问题中,可以将不同的数据集分成若干份,以整数0.1.2,....进行标记,即我们程序开发者可以根据自己业务需要对数据进行标记. 向量标签和向量是一起的,简单来说,可以理解为一个向量对应的一个特殊值,这个值的具体内容可以由用户指定,比如你开发了一个算法A,这个算法对每个向量处理之后会得出一个特殊的标记值p,你就可以把p作为向量标签.同样的,更为直观的话,你可以把…