首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
svm+voting
】的更多相关文章
svm+voting
# encoding:utf-8 import getopt from sklearn.preprocessing import MinMaxScaler import os,time from multiprocessing import Process, Manager import pandas as pd import numpy as np import itertools from sklearn.model_selection import KFold from sklearn i…
基于PCA和SVM的人脸识别
程序中采用的数据集是ORL人脸库,该人脸库共有400副人脸图像,40人,每人10幅,大小为112*92像素,同一个人的表情,姿势有少许变化. 程序的流程主要分为三部分,数据的预处理(PCA降维和规格化),数据的训练阶段,数据的识别阶段 数据的预处理的流程图如下: 数据的训练流程图如下: 识别流程: 下面贴上一些matlab的实现代码: 数据预处理主要是两个函数,ReadFaces和scaling,第一个函数是将训练图像存成一个200*10304的矩阵,第二个是对数据进行规格化,具体代码如下: f…
机器学习:集成学习(Soft Voting Classifier)
一.Hard Voting 与 Soft Voting 的对比 1)使用方式 voting = 'hard':表示最终决策方式为 Hard Voting Classifier: voting = 'soft':表示最终决策方式为 Soft Voting Classifier: 2)思想 Hard Voting Classifier:根据少数服从多数来定最终结果: Soft Voting Classifier:将所有模型预测样本为某一类别的概率的平均值作为标准,概率最高的对应的类型为最终的预测结果…
集成学习-Majority Voting
认识 集成学习(Ensemble Methods), 首先是一种思想, 而非某种模型, 是一种 "群体决策" 的思想, 即对某一特定问题, 用多个模型来进行训练. 像常见的单个模型, KNN, LR, 逻辑回归, 贝叶斯, SVM, 决策树, LDA, PCA ... 这些都是单个模型来训练可能并不能很直观说哪个最好, 但有种直觉, 多个模型来来整, 肯定由于单个模型, 这就是集成学习的思想. 如何 "管理" 多个模型? bagging: boosting: 主流集…
【笔记】集成学习入门之soft voting classifier和hard voting classifier
集成学习入门之soft voting classifier和hard voting classifier 集成学习 通过构建并结合多个学习器来完成学习任务,一般是先产生一组"个体学习器",再用某种策略将它们结合起来,有很多种形式,像是投票,概率比较等等,像是投票就是少数服从多数 生活中经常遇到这种思路,比如看一下一个东西的好坏,可能会问多个人或者查找多个评价,如果多数觉得不错,那可能你也会认为不错,即便是没有使用过 又好像一个数据的预测结果不确定的时候,就可以使用很多个算法来一起跑一遍…
EasyPR--开发详解(6)SVM开发详解
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机器学习谈起中提到的SVM(支持向量机). 我们已经知道,车牌定位模块的输出是一些候选车牌的图片.但如何从这些候选车牌图片中甄选出真正的车牌,就是通过SVM模型判断/预测得到的. 图1 从候选车牌中选出真正的车牌 简单来说,EasyPR的车牌判断模块就是将候选车牌的图片一张张地输入到SVM模型中,…
8.SVM用于多分类
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
5.SVM核函数
核函数(Kernels) 定义 1.1 (核或正定核) 设是中的一个子集,称定义在上的函数是核函数,如果存在一个从到Hilbert空间的映射 使得对任意的,都成立.其中表示Hilbert空间中的内积. 在低纬度空间里不可分的问题,我们可以通过将其向高纬度空间转化,使其线性可分.而转换的关键是找到低维空间向高纬的映射方法. 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
4. SVM分类器求解(2)
最优间隔分类器(optimal margin classifier) 重新回到SVM的优化问题: 我们将约束条件改写为: 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也就是说这些约束式,对于其他的不在线上的点(),极值不会在他们所在的范围内取得,此时前面的系数.注意每一个约束式实际就是一个训练样本. 看下面的图: 实线是最大间隔超平面,假设×号的是正例,圆圈的是负例.在虚线上的点就是函数间隔是1的点,那么他们前面的系数,其他点都是.这三个点称作支持向量.构造拉格朗…
2. SVM线性分类器
在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直线就是一个分类函数,它可以将两类样本完全分开. 实际上,一个线性函数是一个实值函数,而我们的分类问题需要离散的输出值,例如用1表示某个样本属于类别,而用0表示不属于(不属于也就意味着属于),这时候只需要简单的在实值函数的基础上附加一个阈值即可,通过分类函数执行时得到的值大于还是小于这个阈值来确定类别…