svm+voting】的更多相关文章

# encoding:utf-8 import getopt from sklearn.preprocessing import MinMaxScaler import os,time from multiprocessing import Process, Manager import pandas as pd import numpy as np import itertools from sklearn.model_selection import KFold from sklearn i…
程序中采用的数据集是ORL人脸库,该人脸库共有400副人脸图像,40人,每人10幅,大小为112*92像素,同一个人的表情,姿势有少许变化. 程序的流程主要分为三部分,数据的预处理(PCA降维和规格化),数据的训练阶段,数据的识别阶段 数据的预处理的流程图如下: 数据的训练流程图如下: 识别流程: 下面贴上一些matlab的实现代码: 数据预处理主要是两个函数,ReadFaces和scaling,第一个函数是将训练图像存成一个200*10304的矩阵,第二个是对数据进行规格化,具体代码如下: f…
一.Hard Voting 与 Soft Voting 的对比 1)使用方式 voting = 'hard':表示最终决策方式为 Hard Voting Classifier: voting = 'soft':表示最终决策方式为 Soft Voting Classifier: 2)思想 Hard Voting Classifier:根据少数服从多数来定最终结果: Soft Voting Classifier:将所有模型预测样本为某一类别的概率的平均值作为标准,概率最高的对应的类型为最终的预测结果…
认识 集成学习(Ensemble Methods), 首先是一种思想, 而非某种模型, 是一种 "群体决策" 的思想, 即对某一特定问题, 用多个模型来进行训练. 像常见的单个模型, KNN, LR, 逻辑回归, 贝叶斯, SVM, 决策树, LDA, PCA ... 这些都是单个模型来训练可能并不能很直观说哪个最好, 但有种直觉, 多个模型来来整, 肯定由于单个模型, 这就是集成学习的思想. 如何 "管理" 多个模型? bagging: boosting: 主流集…
集成学习入门之soft voting classifier和hard voting classifier 集成学习 通过构建并结合多个学习器来完成学习任务,一般是先产生一组"个体学习器",再用某种策略将它们结合起来,有很多种形式,像是投票,概率比较等等,像是投票就是少数服从多数 生活中经常遇到这种思路,比如看一下一个东西的好坏,可能会问多个人或者查找多个评价,如果多数觉得不错,那可能你也会认为不错,即便是没有使用过 又好像一个数据的预测结果不确定的时候,就可以使用很多个算法来一起跑一遍…
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机器学习谈起中提到的SVM(支持向量机). 我们已经知道,车牌定位模块的输出是一些候选车牌的图片.但如何从这些候选车牌图片中甄选出真正的车牌,就是通过SVM模型判断/预测得到的.   图1 从候选车牌中选出真正的车牌 简单来说,EasyPR的车牌判断模块就是将候选车牌的图片一张张地输入到SVM模型中,…
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
核函数(Kernels) 定义 1.1 (核或正定核) 设是中的一个子集,称定义在上的函数是核函数,如果存在一个从到Hilbert空间的映射 使得对任意的,都成立.其中表示Hilbert空间中的内积. 在低纬度空间里不可分的问题,我们可以通过将其向高纬度空间转化,使其线性可分.而转换的关键是找到低维空间向高纬的映射方法. 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
最优间隔分类器(optimal margin classifier) 重新回到SVM的优化问题: 我们将约束条件改写为: 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也就是说这些约束式,对于其他的不在线上的点(),极值不会在他们所在的范围内取得,此时前面的系数.注意每一个约束式实际就是一个训练样本. 看下面的图: 实线是最大间隔超平面,假设×号的是正例,圆圈的是负例.在虚线上的点就是函数间隔是1的点,那么他们前面的系数,其他点都是.这三个点称作支持向量.构造拉格朗…
在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直线就是一个分类函数,它可以将两类样本完全分开. 实际上,一个线性函数是一个实值函数,而我们的分类问题需要离散的输出值,例如用1表示某个样本属于类别,而用0表示不属于(不属于也就意味着属于),这时候只需要简单的在实值函数的基础上附加一个阈值即可,通过分类函数执行时得到的值大于还是小于这个阈值来确定类别…