Apache Flink 漫谈系列】的更多相关文章

聊什么 在<Apache Flink 漫谈系列 - SQL概览>中我们介绍了JOIN算子的语义和基本的使用方式,介绍过程中大家发现Apache Flink在语法语义上是遵循ANSI-SQL标准的,那么再深思一下传统数据库为啥需要有JOIN算子呢?在实现原理上面Apache Flink内部实现和传统数据库有什么区别呢?本篇将详尽的为大家介绍传统数据库为什么需要JOIN算子,以及JOIN算子在Apache Flink中的底层实现原理和在实际使用中的优化! 什么是JOIN 在<Apache F…
阿里云讲Flink的,还是蛮不错 https://yq.aliyun.com/articles/666043?spm=a2c4e.11153940.blogcont679659.23.9fae56e7bCYRX4…
一.设计思想及介绍 基本思想:“一切数据都是流,批是流的特例” 1.Micro Batching 模式 在Micro-Batching模式的架构实现上就有一个自然流数据流入系统进行攒批的过程,这在一定程度上就增加了延时.具体如下示意图: 2.Native Streaming 模式 Native Streaming 计算模式每条数据的到来都进行计算,这种计算模式显得更自然,并且延时性能达到更低.具体如下示意图: 很明显Native Streaming模式占据了流计算领域 "低延时" 的核…
有状态函数:独立于平台的有状态无服务器堆栈   这是一种在现代基础设施上创建高效.可扩展且一致的应用程序的简单方法,无论规模大小.   有状态函数是一种API,它通过为无服务器架构构建的运行时简化了分布式有状态应用程序的构建.它结合了有状态流处理的优点--处理延迟低.资源受限的大型数据集--以及为支持位置透明性.并发性.可伸缩性和弹性的有状态实体建模的运行时.     它旨在与现代体系结构(如云本机部署)和流行的事件驱动FaaS平台(如AWS Lambda和KNative)配合使用,并提供开箱即…
花了四小时,看完Flink的内容,基本了解了原理. 挖个坑,待总结后填一下. 2019-06-02 01:22:57等欧冠决赛中,填坑. 一.概述 storm最大的特点是快,它的实时性非常好(毫秒级延迟).为了低延迟它牺牲了高吞吐,并且不能保证exactly once语义. 在低延迟和高吞吐的流处理中,维持良好的容错是非常困难的,但为了得到有保障的准确状态,人们想到一种替代方法:将连续时间中的流数据分割成一系列微小的批量作业(微批次处理).如果分割得足够小,计算几乎可以实现真正的流处理.因为存在…
https://mp.weixin.qq.com/s/noD2Jv6m-somEMtjWTJh3w 本文是根据 Apache Flink 系列直播课程整理而成,由阿里巴巴高级开发工程师沙晟阳分享,主要面向于初次接触 Flink.或者对 Flink 有了解但是没有实际操作过的同学.希望帮助大家更顺利地上手使用 Flink,并着手相关开发调试工作. 主要内容: Flink 开发环境的部署和配置 运行 Flink 应用 单机 Standalone 模式 多机 Standalone 模式 Yarn 集群…
本文根据Apache Flink 实战&进阶篇系列直播课程整理而成,由哈啰出行大数据实时平台资深开发刘博分享.通过一些简单的实际例子,从概念原理,到如何使用,再到功能的扩展,希望能够给打算使用或者已经使用的同学一些帮助. 主要的内容分为如下三个部分: Flink CEP概念以及使用场景. 如何使用Flink CEP. 如何扩展Flink CEP. Flink CEP 概念以及使用场景 什么是 CEP CEP的意思是复杂事件处理,例如:起床-->洗漱-->吃饭-->上班等一系列串联…
众所周知,Apache Flink(以下简称 Flink)最早诞生于欧洲,2014 年由其创始团队捐赠给 Apache 基金会.如同其他诞生之初的项目,它新鲜,它开源,它适应了快速转的世界中更重视的速度与灵活性. 大数据时代对人类的数据驾驭能力提出了新的挑战,Flink 的诞生为企业用户获得更为快速.准确的计算能力提供了前所未有的空间与潜力.作为公认的新一代大数据计算引擎,Flink 究竟以何魅力成为阿里.腾讯.滴滴.美团.字节跳动.Netflix.Lyft 等国内外知名公司建设流计算平台的首选…
本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink Contributor.网易云音乐实时计算平台研发工程师岳猛分享.主要分享内容为 Flink Job 执行作业的流程,文章将从两个方面进行分享:一是如何从 Program 到物理执行计划,二是生成物理执行计划后该如何调度和执行. Flink 四层转化流程 Flink 有四层转换流程,第一层为 Program 到 StreamGraph:第二层为 StreamGraph 到 JobGraph:第三层为 JobG…
业务数据的指数级扩张,数据处理的速度可不能跟不上业务发展的步伐.基于 Flink 的数据平台构建.运用 Flink 解决业务场景中的具体问题等随着 Flink 被更广泛的应用于广告.金融风控.实时 BI.实时数仓.实时推荐等多种业务场景,在生产实践中已有丰富的案例与优秀的经验. Flink Forward Asia 倒计时 28 天,企业实践专题大会邀请了字节跳动.滴滴出行.快手.Bilibili.网易.爱奇艺.中国农业银行.奇虎360.贝壳找房.奇安信等不同行业一线技术专家分享 Apache…