计数问题也许可以转化为矩阵乘法形式 比如若该题没有不能在一条边上重复走的条件限制,那么直接将邻接矩阵转化为矩阵乘法即可 故 矩阵乘法计数 对于计数问题,若可以将 \(n\) 个点表示成 \(n \times n\) 的矩阵,并且可以保证中途转移对象不会变化,即可用矩阵乘法计数 至于该题 那么考虑该题,加入了不能重复在一条边上走的限制,那么最简单的思想就是拆点,并且让改点屏蔽掉当前方向,但是如果考虑边,一条无向边可以拆成两条有向边,那拆出来的就比点少很多了,故考虑点边转化 那么只要在起始点加一条超…
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每 天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图(假设每条路的长度都 是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径 Input 第…
Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每 天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图(假设每条路的长度都 是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径 Input 第一行:五个整数N,M,t,A,B. N表示学校里的路口的个数…
首先,题意就把我们引向了矩阵乘法,注意边长m<=60,那么就按边建图,变成一个120个点的图,然后乱搞就行了。 PS:WA了N久改了3次终于A了QAQ CODE: #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #define mod 45989 using namespace std; struct mat{     int n,m;     long…
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 f[i][j] = ∑f[i-1][k] (边k能直接到达边j) 只要不走反向边,就保证了不会走上一条边了 步数很大,而这个方程显然是可以通过矩阵快速幂加速转移的 求初始边矩阵的t-1次方幂t',然后用系数矩阵(与src相连的边)乘以t',即为走了t条边后的方案数 (这个系数矩阵是为了只保留矩阵中起…
发现t非常大,所以大概就是快速幂一类的问题了, 然后根据k^3logn算了算,发现k大约是边数的时候复杂度比较合适. 发现比较麻烦的就是前驱的记录,所以直接把边看做点,不能走反向边,但是可以走重边,然后t-- 之后弄出状态转移矩阵递推即可. #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i…
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   const int MOD = 45989; const…
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Status][Discuss] Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多…
题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边看做点建矩阵,那么每次从一条边出发都只会到其他的边,不能仍然在这条边上“停留”,所以这就可以满足题目的限制.将每条边拆成两条单向边,比如一条编号为 4,一条编号为 5.那么 4^1=5, 5^1=4.这样只要不从第 i 条边走到 i 或 i^1 就可以了.初始的矩阵中以 A 为起点的边到达的方案数为…
题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp做法:设$dp\left[i\right]\left[j\right]$表示第i个时刻(初始算0),走到第j个点的答案总数 但是这里要限制不能反复走,那么直接设点会导致信息丢失 那我们怎么样才能让保存当前所在点的情况下,不丢失最后一条边的信息呢? 答案非常显然,我们只要设$dp\left[i\rig…