Appium官网Introduction】的更多相关文章

英文官网:http://appium.io/introduction.html?lang=zh Appium 简介 Appium是一个开源的自动化测试工具,其支持iOS和安卓平台上的原生的,基于移动浏览器的,混合的应用. 原生应用:仅使用iOS和安卓标准SDK编写的应用 基于移动浏览器的应用:用移动平台的浏览器访问的应用(Appium支持iOS上的Safri和安卓上的Chrom或内嵌的“浏览器”应用) 混合应用:把基于一个webview实现的所有功能包装成一个应用的应用,webview是一个可以…
高效学习appium第一步,学会查看appium官方文档.如果能把appium文档都通读一遍,对学习appium大有益处. 而能做到通读appium官方文档的人,想必不是很多,刚开始学习appium的时候,你都是倾向于遇到一个问题就百度一个问题. 阅读官方文档的好处: 1.学习一手资料,官方的文档是知识的源头,其他的都是搬官网文档中的内容,还可能是搬了一部分. 2.及时获取到知识,在百度上搜索到的可能是几年前的材料,现在已经过时了 .网上贴的appium官网,现在都访问不了了,因为appium换…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Putting the Pieces Together 拼在一起 This combination of messaging, storage, and stream processing may seem unusual but it is essential to Kafka's role as a streaming platform. 消息传递,存储和流处理的组合看似反常,…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Kafka for Stream Processing kafka的流处理 It isn't enough to just read, write, and store streams of data, the purpose is to enable real-time processing of streams. 仅仅读,写和存储是不够的,kafka的目标是实时的流处理. In…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Kafka as a Storage System kafka作为一个存储系统 Any message queue that allows publishing messages decoupled from consuming them is effectively acting as a storage system for the in-flight messages. Wh…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Kafka as a Messaging System kafka作为一个消息系统 How does Kafka's notion of streams compare to a traditional enterprise messaging system? Kafka的流与传统企业消息系统相比的概念如何? Messaging traditionally has two mode…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Guarantees Kafka的保证(Guarantees) At a high-level Kafka gives the following guarantees: Messages sent by a producer to a particular topic partition will be appended in the order they are sent. T…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Consumers 消费者(Consumers) Consumers label themselves with a consumer group name, and each record published to a topic is delivered to one consumer instance within each subscribing consumer grou…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Producers 生产者(Producers) Producers publish data to the topics of their choice. The producer is responsible for choosing which record to assign to which partition within the topic. This can be…
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Distribution 分布式(Distribution) The partitions of the log are distributed over the servers in the Kafka cluster with each server handling data and requests for a share of the partitions. Each p…