题目大意:n幢楼,从左边能看见f幢楼,右边能看见b幢楼 楼高是1~n的排列. 问楼的可能情况 把握看到楼的本质! 最高的一定能看见! 计数问题要向组合数学或者dp靠拢.但是这个题询问又很多,难以dp 如果把能看见的和之后挡住的看成一组的话... 那么可以看成这样: 每一组要固定第一个,,后面可以随便动,n!/n=(n-1)! 第一类斯特林数圆排列! 可分成的组数是:S[n-1][f+b-2](扣除中间最高的) 每一个圆排列只有最大值靠前的唯一展开方式 所以方案数是S[n-1][f+b-2]*C(…
有n(<=2000)栋楼排成一排,高度恰好是1至n且两两不同.现在从左侧看能看到f栋,从右边看能看到b栋,问有多少种可能方案. T组数据, (T<=100000) 自己只想出了用DP搞 发现最高的楼一定能看到,分成了左右两个问题 f[i][j]表示i栋楼从左面可以看到j栋方案数,转移枚举最高楼左面有几栋楼,乘上个组合数和剩下的排列 问题是DP完了求ans需要O(n)枚举最高楼在哪........ 然后发现好多人用了第一类sirtling数 考虑一栋被看到的楼,它会挡住它右面的几栋楼,这几栋楼可…
题目大意 n栋楼有n个不同的高度 现在限制从前面看有F个点,后面看有B个点 分析 最高那栋楼哪都可以看到 剩下的可以最高那栋楼前面分出F-1个组 后面分出B-1个组 每个组的权值定义为组内最高楼的高度 那么\(\binom {F+B-2}{F-1}\)分好组后,组和组之间的顺序是唯一确定的 而且要满足最高楼前面的组,每组最高楼在最左(不然最高楼左边的组内成员能被看到) 在最高楼后面的组同理 确定好每组最高楼后,剩下的楼可以任意排序 又有这样一个结论: (n-1)个点的排列数=n个点的轮换数 那就…
Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1249    Accepted Submission(s): 408 Problem Description There are N buildings standing in a straight line in the City, numbere…
[HDU 3625]Examining the Rooms (第一类斯特林数) 题面 有n个房间,每个房间有一个钥匙,钥匙等概率的出现在n个房间内,每个房间中只会出现且仅出现一个钥匙.你能炸开门k次,问你能进入所有房间的概率.特殊要求:不能炸1号房间的门. T组询问 T<=2000,k<=n<=2000 分析 前置知识(如果你了解斯特林数,可以跳过) 圆排列:把n个元素排在一个圆周上,如果旋转之后两个圆周上的排列一样,那么这两个排列相同 第一类斯特林数S(n,m)表示把n个不同元素构成m…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4372 首先,最高的会被看见: 然后考虑剩下 \( x+y-2 \) 个被看见的,每个带了一群被它挡住的楼,其实方案数是圆排列,每个圆从最高的楼开始断掉都是不同的方案: 再把这 \( x+y-2 \) 个圆排列分成两组放左右两边,它们按最高楼的高度就自动有顺序了,不必再算: \( s[i][j] \) 表示第一类斯特林数,答案就是 \( s[n-1][x+y-2] * C_{x+y-2}^{x-1} \)…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3625 学习斯特林数:https://blog.csdn.net/qq_33229466/article/details/75042895 https://www.cnblogs.com/gzy-cjoier/p/8426987.html http://www.cnblogs.com/zhouzhendong/p/Stirling-Number.html 关于这道题: 得到一把钥匙后,可以连续开的门与钥匙…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看可以看到b栋楼,并且高的楼会挡住低的楼. 问你这些楼有多少种排列方法. 题解: 由于高的楼会挡住低的楼,所以这些楼首先会被划分成f+b-2个区域(除去中间最高的楼),并且左边有f-1个,右边有b-1个. 对于一个区域(假设在左边),这个区域由若干栋楼组成,并且最高的楼一定在最左边. 那么,由一个区域…
Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2521    Accepted Submission(s): 817 Problem Description There are N buildings standing in a straight line in the City, numbere…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3625 n^2 求斯特林数就行.要减去的就是1号钥匙在1号房间的方案,即 s[ n-1 ][ m-1] . 注意是 <=m . #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; ;…
首先想过n^3的组合方法,即f(i,j,k)=f(i-1,j,k)*(i-2)+f(i-1,j-1,k)+f(i-1,j,k-1),肯定搞不定 然后想了好久没有效果,就去逛大神博客了,结果发现需要用到第一类stirling数 第一类stirling数S(n,m)表示的是n个数排成m个非空环排列的数目 每个环排列中必然有一个是可以看见的,然后再对这m个环求组合数 不难理解,但是很难想到 #include <stdio.h> #include <string.h> #define mo…
题意:有n个点上可能有楼房,从前面可以看到x栋楼,从后面可以看到y栋,问楼的位置有多少种可能. 印象中好像做过这个题,…
题目链接:https://vjudge.net/problem/HDU-4372 Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2509    Accepted Submission(s): 815 Problem Description There are N buildings standin…
Description $N$座高楼,高度均不同且为$1~N$中的数,从前向后看能看到$F$个,从后向前看能看到$B$个,问有多少种可能的排列数. $T$组询问,答案模$1000000007$.其中$n\leq 2000,T\leq 100000$ 题解: 可以考虑现将最高的拿出来,那么可以考虑左边需要有$F-1$个房子成递增关系,那么可以将左边的房子分成$F-1$个组,右边有$B-1$个房子成递减关系,也是如此. 不禁想到第一类斯特林数,$s(p,k)$是将将$p$个物体排成$k$个非空循环排…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: n个房间,房间里面放着钥匙,允许破门而入k个,拿到房间里面的钥匙后可以打开对应的门,但是1号门不能破门而入,求这样检查完所有房间,概率是多少? 分析: 钥匙随机放到房间,全排列有n!: n个房间,破k个门进入,就是第一类斯特林数S(n,k): 但是,第一个门不能破门而入,就是要减去S(n-1,k-1): 然后求和SUM = S(n,i)  {1<=i<=k} 概率就是 SUM / N…
先和第二类做一个对比 第一类Stirling数是有正负的,其绝对值是包含n个元素的集合分作k个环排列的方法数目.递推公式为, S(n,0) = 0, S(1,1) = 1. S(n+1,k) = S(n,k-1) + nS(n,k). 边界条件: S(0 , 0) = 1 S(p , 0) = 0 p>=1 S(p , p) =1 p>=0 一些性质: S(p ,1) = 1 p>=1 S(p, 2) = 2^(p-1)– 1 p>=2 第二类Stirling数是把包含n个元素的集…
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1138    Accepted Submission(s): 686 Problem Description A murder happened in the hotel. As the best detective in the town, yo…
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019雅礼集训][第一类斯特林数][NTT&多项式]permutation 感觉这个东西非常的...巧妙. 暴力 第一类斯特林树S(n,k)就是将n个数字划分为k个不相区分的圆排列的方案数(即忽略顺序). 首先,第一类斯特林数有一个人尽皆知的\(O(n^2)\)递推式: \[S(n,k)=S(n-1,k-…
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a,b<=n 输入格式 输入三个整数n,a,b. 输出格式 输出一个整数,表示答案. 思路 这道题是真的神啊... 首先,根据官方题解的思路,首先有一个n^2的DP: 定义dp[i][j]表示一个长度为i的排列,从前往后数一共有j个数字大于所有排在它前面的数字. 首先有转移式: \[dp[i][j]=dp[…
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom {A+B-2} {A - 1}\) 注意到这题的复杂度瓶颈是求第一类斯特林数,因为求组合数可以\(O(N)\),但是暂时我们求第一类斯特林数只有\(O(N^2)\)的方法 考虑第一类斯特林数的转移式子:\(\begin{bmatrix} a \\ b \end{bmatrix} = \begin{b…
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列,定义两个排列\(p,q\)之间的距离为每次选择\(p\)中两个元素交换,使其变成\(q\)的最小次数. 求距离恰好为\([0,n-1]\)的填数方案数. 加强的题目在\(BZOJ\)上有,戳这里. 题解 看到这道题目就觉得无比熟悉.回头翻了翻发现果然是省队集训的时候的题目... 果然都是原题啊..…
[CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI]建筑师的加强版本. 显然每一个前缀最大值和一段连续的区间构成了一个环排列,显然每个前缀最大值就是这个环中的最大值.而全局最大值一定把前后缀最大值分开. 所以答案考虑除最大值外,左侧需要\(a-1\)个前缀最大值,右侧需要\(b-1\)个前缀最大值.也就是一共要\(a+b-2\)个环,那么这一部分的贡…
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1661    Accepted Submission(s): 1015 Problem Description A murder happened in the hotel. As the best detective in the town, yo…
[Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\(i\)个数并且能够看到\(j\)个的方案数,强制最大值在最右侧. 每次添加最小的一个数放进来:\(f[i][j]=f[i-1][j-1]+f[i-1][j]*(i-2)\) 如果把它放在最前面,答案加一,也就是\(f[i-1][j-1]\)转移过来, 否则的话,因为最大值强制放在最后面,所以还剩下…
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\begin{bmatrix} n \\ i \end{bmatrix}x^{i}\] 分治\(NTT\)即可在\(O(nlog^2n)\)的时间内预处理出同一个\(n\)的所有\(\begin{bmatrix} n \\ i \end{bmatrix}\) 其实还有比较优美的倍增\(fft\)的\(O(…
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列,然后选出\(A - 1\)个集合放左边,剩余放右边 容易发现分割集合并内部排列实质对应第一类斯特林数\[\begin{bmatrix} n - 1 \\ A + B - 2 \end{bmatrix}\] 所以答案就是 \[\begin{bmatrix} n - 1 \\ A + B - 2 \e…
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大值的数的个数,求长度为 \(n\) 的排列中满足 \(A = a\) 且 \(B = b\) 的排列个数.\(n \le 10^5\),答案对 \(998244353\) 取模. \(\color{#0066ff}{输入格式}\) 三个整数n,a,b \(\color{#0066ff}{输出格式}\…
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子,我们可以把剩下的\(n-1\)根柱子放入这\(A+B-2\)(左边\(A-1\)个右边\(B-1\)个)个圆排列中(第一类斯特林数),然后在根据组合数进行区分,有: \[ ans=s_{n-1}^{A+B-2}\times C_{A+B-2}^{A-1} \] 预处理第一类斯特林和组合数即可. #…
Find the Permutations Sorting is one of the most used operations in real life, where Computer Science comes into act. It is well-known that the lower bound of swap based sorting is nlog(n). It means that the best possible sorting algorithm will take…
题目 CF960G 做法 设\(f(i,j)\)为\(i\)个数的序列,有\(j\)个前缀最大值的方案数 我们考虑每次添一个最小数,则有:\(f(i,j)=f(i-1,j)+(i-1)*f(i-1,j-1)\),显然这是第一类斯特林数 从而我们得到一个朴素的答案:\[Ans=\sum\limits_{i=1}^{n}f_{i,a-1}×f_{n-1-i,b-1}×C_{n-1}^i\] 理解:枚举\(i+1\)为最大值添的位置,则已限制了前缀最值个数及后缀最值个数,然后再乘上前半部分所填的数 观…