题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证明和实现我是参考此大神的 代码: #include<iostream> using namespace std; #define MAXN 100000 typedef long long LL; LL m[MAXN],a[MAXN]; void extended_gcd(LL a,LL b,LL…
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:Choose k different positive integers a1, a2, …, ak. For some n…
F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers.…
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中r1,r2,--,rk互质 这种问题都有多解,每一个解都为最小的解加上若干个lcm(r1,r2,...,rk),这个不用我证了吧(-_-||) 解决这个问题的方法是构造法, 先构造k个数 满足, 这样就保证 ,但是由于 bi 乘了除 ri 以外所有 r,所以bi模其它的 r 都为 0, 再把所有 b…
Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   Accepted: 2873 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is…
Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907   Accepted: 3336 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is…
Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2891   Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative i…
1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己听:K是要求的数字 第一个读入的A1,Mod1不用改,从2开始做,把Mod2改成LCM,A2改成Ans,接着搞3 /* 原式: X = A[1] (%Mod[1]) X = A[2] (%Mod[2]) ... X = A[n] (%Mod[n]) K[1]*Mod[1]+A[1] = X K[2]…
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 21651 Accepted: 7266 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative inte…
http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 11970   Accepted: 3788 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express no…
Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8193   Accepted: 2448 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is…
[POJ2891]Strange Way to Express Integers(拓展CRT) 题面 Vjudge 板子题. 题解 拓展\(CRT\)模板题. #include<iostream> #include<cstdio> using namespace std; #define ll long long #define MAX 111111 ll exgcd(ll a,ll b,ll &x,ll &y) { if(!b){x=1,y=0;return a;…
Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839   Accepted: 5625 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is…
I. Strange Way to Express Integers 题目描述 原题来自:POJ 2891 给定 2n2n2n 个正整数 a1,a2,⋯,ana_1,a_2,\cdots ,a_na​1​​,a​2​​,⋯,a​n​​ 和 m1,m2,⋯,mnm_1,m_2,\cdots ,m_nm​1​​,m​2​​,⋯,m​n​​,求一个最小的正整数 xxx,满足 ∀i∈[1,n],x≡ai (modmi ),或者给出无解. 输入格式 多组数据. 每组数据第一行一个整数 nnn:接下来 nn…
Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8476   Accepted: 2554 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k…
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by ev…
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k different positive integers a1, a2, -, ak. For some non-negative m, divide it by ev…
http://poj.org/problem?id=2891 Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16849   Accepted: 5630 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is…
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ …
http://poj.org/problem?id=2891 (题目链接) 题意 求解线性同余方程组,不保证模数一定两两互质. Solotion 一般模线性方程组的求解,详情请见:中国剩余定理 细节 注意当最后发现方程无解直接退出时,会导致有数据没有读完,然后就会Re,所以先用数组将所有数据存下来. 代码 // poj2891 #include<algorithm> #include<iostream> #include<cstdlib> #include<cst…
中国剩余定理/扩展欧几里得 题目大意:求一般模线性方程组的解(不满足模数两两互质) solution:对于两个方程 \[ \begin{cases} m \equiv r_1 \pmod {a_1} \\ m \equiv r_2 \pmod{a_2} \end{cases} \] 我们可以列出式子 $$ a_1x+r_1=a_2y+r_2 $$ 利用扩展欧几里得解出一个可行解$M'$.那么我们就可以将两个限制条件合为一个: $$ m \equiv M' \pmod{ lcm(a_1,a_2)}…
题目链接 题意:给k对数,每对ai, ri.求一个最小的m值,令m%ai = ri; 分析:由于ai并不是两两互质的, 所以不能用中国剩余定理. 只能两个两个的求. a1*x+r1=m=a2*y+r2联立得:a1*x-a2*y=r2-r1;设r=r2-r2; 互质的模线性方程组m=r[i](mod a[i]).两个方程可以合并为一个,新的a1为lcm(a1,a2), 新的r为关于当前两个方程的解m,然后再和下一个方程合并…….(r2-r1)不能被gcd(a1,a2)整除时无解.   怎么推出的看…
http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定理问题,由于输入的ai不一定两两互质,而中国剩余定理的条件是除数两两互质. 这是一般的模线性方程组,对于 X mod m1=r1 X mod m2=r2 ... ... ... X mod mn=rn 首先,我们看两个式子的情况 X mod m1=r1-----------------------(…
写一下自己的理解,下面附上转载的:若a==b(modk);//这里的==指的是同余,我用=表示相等(a%k=b)a-b=kt(t为整数)以前理解的错误思想:以前认为上面的形式+(a-tb=k)也是成立的,今天一想随便就能举出一个反例11==5(mod3)同样是求这个东西..X mod m1=r1X mod m2=r2.........X mod mn=rn 首先,我们看两个式子的情况X mod m1=r1……………………………………………………………(1)X mod m2=r2…………………………
一种不断迭代,求新的求余方程的方法运用中国剩余定理. 总的来说,假设对方程操作.和这个定理的数学思想运用的不多的话.是非常困难的. 參照了这个博客的程序写的: http://scturtle.is-programmer.com/posts/19363.html 这个博客举例说的挺好的:http://blog.csdn.net/mishifangxiangdefeng/article/details/7109217 hdu 3579 Hello Kiki 中国剩余定理(不互质的情况) 对互质的情况…
http://poj.org/problem?id=2891 结果看了半天还是没懂那个模的含义...懂了我再补充... 其他的思路都在注释里 /********************* Template ************************/ #include <set> #include <map> #include <list> #include <cmath> #include <ctime> #include <deq…
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' 得到X=x'*m1+r2 X的通解X'=X+k*LCM(m1,m2) 上式可化为:X'%LCM(m1,m2)=X 到此即完成了两个式子的合并,再将此式子与后边的式子合并,最后的得到的X'即为答案的通解,求最小整数解即可. #include<stdio.h> #include<string.h…
求解一元线性同余方程组: x=ri(mod ai) i=1,2,...,k 解一元线性同余方程组的一般步骤:先求出前两个的解,即:x=r1(mod a1)     1x=r2(mod a2)     21式等价于x=r1+a1*m,2式等价于x=r2+a2*n联立可得:m*a1-n*a2=r2-r1=c若方程有解,则必须(a1,a2)|c设d=(a1,a2),那么如果有解,即可求得 m*a1-n*a2=d的解,m=m'则   m*a1-n*a2=c的解,m0=m'*c/d通解m*=m0+(a2/…
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1}b[j]$ ,$ res$是前$ i-1 $个方程的最小解 则$ res+x*M$ 是前 $i-1 $个方程的通解 那么我们求的就是 $res+x*M ≡ a[i] (mod b[i])$ $<=> x*M - y*b[i] = a[i]-res$ 用exgcd求出的解为 t (当且仅当 gcd…
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/article/details/52186204 这个博客提供了互质情况下的代码以及由此递推出的(另一个版本的)非互质情况下的代码. 假如给出m[n],a[n]分别代表要求的除数和余数: 互质情况下: ( 做n次 ) 对不包含m[i]的所有m求积 ( 互质的数的最小公倍数 ) , exgcd求出来逆元后…