题目大意:输入两个数 a,b,输出一个k使得lcm(a+k,b+k)尽可能的小,如果有多个K,输出最小的. 题解: 假设gcd(a+k,b+k)=z; 那么(a+k)%z=(b+k)%z=0. a%z+k%z=b%z+k%z:a%z=b%z:(a-b)%z=0; 也就是说,z一定是a-b的因子.a-b是已知的,枚举a-b的因子就好了. 也就是枚举z,因为(a+k)%z==0,如果让k最小,那么k=z-a%z. #include<iostream> #include<cstdio>…
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的k. 首先让b>a,由lcm(a,b)=a*b/gcd(a,b),可以得出如果b%a==0,那么它们的最小公倍数就是b,此时的k就等于0.但如果b%a!=0的话,我们设g=gcd(a+k,b+k),那么就是有a+k=q1*g,b+k=q2*g,两者做差,那么b-a=(q2-q1)*g,由此我们可以知…
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher. N…
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=47319 题目大意:给定一个序列,要求确定一个子序列,①使得该子序列中所有值都能被其中一个值整除,②且子序列范围尽可能大(r-l尽可能大). 解题思路: 对于要求1,不难发现只有min(L,R)=gcd(L,R)时才行.其中gcd是L,R范围内的最大公约数,min是L,R范围内的最小值. 对于要求2,传统思路是r-l从大到小枚举,每次确定一个(L,R)范围,进行判…
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = gcd(b, b - a) (b > a) 证明一下: 令 gcd(a, b) = c, (b > a) 则有 a % c = 0, b % c = 0 那么 (a - b) % c = 0 令 gcd(a, b - a) = c', 假设c' != c 则有 a % c' = 0, (b - a…
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 XOR的性质 GCD 由于题目只给出一个n,我们要求对数,能做的也始终暴力枚举a,b,这样就有n^2的复杂度,由于n很大,根本过不了. 于是我们就想用到其中一些性质,如XOR 与GCD,不妨假设 a xor b = c,并且根据题意还知道, gcd(a,b) = c,也就说明c一定是a的因子,所以在枚举的…
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ 重要知识点 GCD(a,b)=GCD(a,b-a)=GCD(b,b-a) (b>a) 证明: 设GCD(a,b)=c 则a%c=0,b%c=0,(b-a)%c=0 所以GCD(a,b-a)=c 得GCD(a,b)=GCD(a,b-a) gcd(a+k,b-a)肯定是(b-a)的因子 所以gcd(a…
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k)$ 如果有多个$k$,输出最小的$k$ 数据范围: $1 \le a, b \le 10^9$ 分析: 假设 $gcd\left (  a+k,b+k\right )= t$ 那么$(a+k)\%t=(b+k)\%t=0$ 化简得到$a\%t=b\%t$ $a-x\times t=b-y\time…
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0<=k),使得a+k与b+k的最小公倍数最小. 解题思路:首先我们需要知道gcd(a,b)=gcd(a,b-a)=gcd(b,b-a)(b>a)的 我们要求的是lcm(a+k,b+k)=(a+k)(b+k)/gcd(a+k,b+k)=(a+k)(b+k)/gcd(a+k,b-a) 因为b-a是定值,所…
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看到一个引理: GCD(a,b) = GCD(a,b-a) = GCD(b,b-a)(b > a) 假设GCD(a,b) = c; a%c = ; b%c = ; 那么(b-a)%c = ; 这证明了a和(b-a),b和(b-a)有公约数c; 假设GCD(a,b-a)=c' > c; 那么,a%c'…