tf.truncated_normal(shape, stddev=0.1) 从截断的正态分布中输出随机值. 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择. 参数: shape: 一维的张量,也是输出的张量. mean: 正态分布的均值. stddev: 正态分布的标准差. dtype: 输出的类型. seed: 一个整数,当设置之后,每次生成的随机数都一样. name: 操作的名字. tf.random_normal(shape, mea…
统计手写数字集的HOG特征 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 这篇文章是模式识别的小作业,利用svm实现Minist数据集手写体识别,在这里我实现了opencv中的svm和libsvm两个版本,供大家做参考. [https://github.com/YihangLou/SVM-Minist-HandWriting-Recognition]https://github.com/YihangLou/…
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input', 'Model', 'Sequential', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__ver…
0.目录 1.前言 2.通过pymssql与数据库的交互 3.通过pyqt与界面的交互 4.UI与数据库的交互 5.最后的main主函数 1.前言 版本:Python3.6.1 + PyQt5 + SQL Server 2012 以前一直觉得,机器学习.手写体识别这种程序都是很高大上很难的,直到偶然看到了这个视频,听了老师讲的思路后,瞬间觉得原来这个并不是那么的难,原来我还是有可能做到的. 于是我开始顺着思路打算用Python.PyQt.SQLServer做一个出来,看看能不能行.然而中间遇到了…
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https://cran.r-project.org/web/packages/softmaxreg/index.html ------------------------------------------------------------------ 一.介绍 Softmax Regression模型本质还是…
mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test).每一个MNIST数据单元有两部分组成:一张包含手写数字的图片和一个对应的标签.我们把这些图片设为“xs”,把这些标签设为“ys”.训练数据集和测试数据集都包含xs和ys,比如训练数据集的图片是 mnist.train.images ,训练…
tf.nn.softmax_cross_entropy_with_logits(logits,labels) #其中logits为神经网络最后一层输出,labels为实际的标签,该函数返回经过softmax转换之后并与实际值相比较得到的交叉熵损失函数的值,该函数返回向量 1.tf.nn.softmax_cross_entropy_with_logits的例子: import tensorflow as tf logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3…
摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别.自动驾驶.物体检测等领域,CNN被广泛使用,并都取得了最优性能.对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项目,网络上也充斥着各种各样的成熟工具箱的相关代码,新手在利用相关工具箱跑一遍程序后就能立刻得到很好的结果,这时候获得的感受只有一个——深度学习真神奇,却没能真正了解整个…
这个系列文章主要记录使用keras框架来搭建深度学习模型的学习过程,其中有一些自己的想法和体会,主要学习的书籍是:Deep Learning with Python,使用的IDE是pycharm. 在深度学习中的深度指的是数据模型中包含着的多个层次,而深度学习是对一堆数值做数学运算,但是这种数学运算是高纬度的,是大量的:在这些数学运算中,深度学习中的层通过反馈(比如后向传播)来对参数进行调整,然后再进行计算.如此反复数次,从而越来越接近我们所给出的正确结果.而在这个过程中,深度学习中的每个层所学…
安装完MXNet之后,运行了官网的手写体识别的例子,这个相当于深度学习的Hello world了吧.. http://mxnet.io/tutorials/python/mnist.html 运行的过程中开始想的是新建一个文件夹专门存放我的工程,但是在导入mxnet的过程中又出现了错,于是将minist的脚本文件放在了与mxnet平行的目录下,可以运行,并且十分节省显存!!但是有以下的问题: 1.在GTX1080的显卡上训练,网络是不收敛的,但是在980或者更旧的显卡上就可以,在github上也…