第一种 %% %用神经网络解决异或问题 clear clc close ms=4;%设置4个样本 a=[0 0;0 1;1 0;1 1];%设置输入向量 y=[0,1,1,0];%设置输出向量 n=2;%输入量的个数 m=3;%隐层量的个数 k=1;%输出层的个数 w=rand(n,m);%为输入层到隐层的权值赋初值 v=rand(m,k);%为隐层到输出层的权值赋权值 yyuzhi=rand(1,m);%为输入层到隐层的阈值赋初值 scyuzhi=rand(1,1);%为隐层到输出层的阈值赋权…
首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最…
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值…
首先用Python实现简单地神经网络算法: import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / (1 + np.exp(-x)) # sigmoid函数的导数 def logistic_derivative(x): r…
1 BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到输出.输出值的值域为,例如的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大. 1.1 前向传播的计算 为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例: 输入的样本为: ${\Large \overrightarr…
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chenxiaoqing.范娜Fiona.杨超.微胖.汪汪.赵巍 导读:这是<神经网络和深度学习简史>第一部分.这一部分,我们会介绍1958年感知机神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来. 深度学习掀起海啸 如今,深度学习浪潮拍打计算机语言的海岸已有好几年,但是,…
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
最近这段时间系统性的学习了 BP 算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指正. 什么是梯度下降和链式求导法则 假设我们有一个函数 J(w),如下图所示. 梯度下降示意图 现在,我们要求当 w 等于什么的时候,J(w) 能够取到最小值.从图中我们知道最小值在初始位置的左边,也就意味着如果想要使 J(w) 最小,w的值需要减小.而初始位置的切线的斜率a > 0(也即该位置对应的导数大于0),w = w – a 就能够让 w 的值减小,循环求导更新w直到 J(w) 取得最小值.如果…
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/article/details/79381863) 更新:为了让看博客的带哥们能直观的看,我编译截图了,放在这里,latex 源码在下面 这个只是为了应付作业总结的,所以没有认真检查过,如果内容.正确性(尤其是这个)和格式上有什么问题请务必在下面评论区中指出. \documentclass{artic…