目前最好的高动态范围(HDR)成像方法通常是先利用光流将输入图像对齐,随后再合成 HDR 图像.然而由于输入图像存在遮挡和较大运动,这种方法生成的图像仍然有很多缺陷.最近,腾讯优图和香港科技大学的研究者提出了一种基于深度学习的非光流 HDR 成像方法,能够克服动态场景下的大范围前景运动. 论文:Deep High Dynamic Range Imaging with Large Foreground Motions 论文链接:https://arxiv.org/abs/1711.08937 摘要…
近日,知名开源社区Github上有个名为DSFD(Dual Shot Face Detector)的算法引起了业内关注,它正是来自于腾讯优图.目前,该算法已经被计算机视觉顶级会议CVPR 2019接收,并且在2018年10月刷新了两个权威的人脸检测数据集WIDER FACE和FDDB上的新纪录. Github开源地址: https://github.com/TencentYoutuResearch/FaceDetection-DSFD 论文公开地址:https://arxiv.org/abs/1…
一.腾讯优图 1.开发者地址:http://open.youtu.qq.com/welcome/developer 2.接入流程:按照开发者页面的接入流程接入之后,创建应用即可获得所需的AppID.SecretID和SecretKey这是进行接口调用必须的凭证 3.测试流程: 3.1.测试可以直接调用网络接口,或者下载相应语言的sdk(http://open.youtu.qq.com/welcome/developer#/tool-sdk),我采用的是下载python版本的sdk(该sdk对应的…
近日,腾讯优图与<科学>(Science)杂志共同发布<Seeing is believing: R&D applications of computer vision>(眼见为实:计算机视觉的研发和应用)主题报告,通过全球计算机视觉领域的专家访谈,为大众带来当下计算机视觉技术发展的全面解读,也为即将到来的计算机视觉峰会拉开序幕. 人工智能 (AI) 曾经只是一种存在于科幻领域的科技,而现在,研究实验室已经不断研发出了各种应用 AI 的日常产品.AI 技术的进步很大程度上得…
导语 2016年,继虚拟现实(VR)之后,人工智能(AI)的概念全面进入大众的视野.谷歌,微软,IBM等科技巨头纷纷重点布局,AI 貌似将成为互联网的下一个风口. 很多开发同学,对人工智能非常感兴趣,确不知从何入手进行学习,精神哥也同样被这个问题困扰.直至看见汉彬同学的这篇文章,豁然开朗,让我坚定地迈出了成为"AI 工程师"的第一步! 本文作者:腾讯QQ会员技术团队-徐汉彬 微信公众号:小时光茶社 一.人工智能和新科技革命 2017年,围棋界发生了一件比较重要的事,Master(Alp…
AI(人工智能)是未来,是科幻小说,是我们日常生活的一部分.所有论断都是正确的,只是要看你所谈到的AI到底是什么. 例如,当谷歌DeepMind开发的AlphaGo程序打败韩国职业围棋高手Lee Se-dol,媒体在描述DeepMind的胜利时用到了AI.机器学习.深度学习等术语.AlphaGo之所以打败Lee Se-dol,这三项技术都立下了汗马功劳,但它们并不是一回事. 要搞清它们的关系,最直观的表述方式就是同心圆,最先出现的是理念,然后是机器学习,当机器学习繁荣之后就出现了深度学习,今天的…
近期,来自微软和中国科学技术大学的刘铁岩等人发表论文,介绍了一种新型自动神经架构设计方法 NAO,该方法由三个部分组成:编码器.预测器和解码器.实验证明,该方法所发现的架构在 CIFAR-10 上的图像分类任务和 PTB 上的语言建模任务中都表现强劲,在计算资源明显减少的情况下优于或持平于之前的架构搜索最佳方法. 从几十年前 [13, 22] 到现在 [48, 49, 28, 39, 8],无人干预的神经网络架构自动设计一直是机器学习社区的兴趣所在.关于自动架构设计的最新算法通常分为两类:基于强…
本文来自于腾讯bugly开发者社区,未经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/5809bb47cc5e52161640c5c8 Dev Club 是一个交流移动开发技术,结交朋友,扩展人脉的社群,成员都是经过审核的移动开发工程师.每周都会举行嘉宾分享,话题讨论等活动. 本期,我们邀请了 腾讯 TEG 技术工程师"文亚飞",为大家分享<深度学习在OCR中的应用>. 大家好,我是文亚飞,来自腾讯TEG,目前负责图像识别相关的工作.OCR(…
基于网格曲面的几何拓扑信息可以为物体语义分析和几何建模提供较强的线索,但是,如此重要的连接性信息在点云中是缺失的.为此,旷视西雅图研究院首次提出一种全新的深度学习网络,称之为 GeoNet,可建模点云所潜在表征的网格曲面特征. 为证明这种学习型的测地表示的有效性,旷视西雅图研究院.UCLA 等机构提出一种融合方案,即把 GeoNet 与其他 baseline 和 backbone 相结合,比如 PU-Net.PointNet++,用于若干对潜在网格曲面特征理解有较高要求的点云分析任务. 得益于对…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀疏的离散表示 3.1.3 混合方法 3.1.4 基于点的方法 逐点MLP方法 点卷积方法 基于RNN方法 基于图方法 3.2 实例分割 3.2.1 基于候选框的方法 3.2.2 不需要候选框的方法 3.3 部件分割 3.4 总结 4. 结论 3D点云深度学习:综述(3D点云分割部分) Deep Le…