DNN、CNN、RNN的区别】的更多相关文章

CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心求助   首先,我感觉不必像 @李Shawn 同学一样认为DNN.CNN.RNN完全不能相提并论.从广义上来说,NN(或是更美…
Keras api 提前知道: BatchNormalization, 用来加快每次迭代中的训练速度 Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1. TimeDistri…
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也是10亿量级,…
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖…
以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分类视频分类.3. CNN特征提取用于对话问答图片问答.还有很多领域,比如根据面目表情判断情感,用于遥感地图的标注,用于生物医学的图像解析,用于安全领域的防火实时监控等.而且现阶段关于CNN+RNN的研究应用相关文章更加多样,效果越来越好,我们可以通过谷歌学术参阅这些文章,而且大部分可免费下载阅读,至…
参考: http://blog.csdn.net/iamrichardwhite/article/details/51089199 一.神经网络的发展历史 五六十年代,提出感知机 八十年代,提出多层感知机,也就是神经网络,神经网络的层数直接决定了它对现实的刻画能力. 但是,多层神经网络带来了一些问题: 优化函数越来越容易陷入局部最优解 梯度消失现象更加严重 06年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层,神经网络有了真正意义上的深度,解开了深度学习DNN的热潮.近期…
#CNN x = tf.placeholder(tf.float32,[None,input_node],name="x_input") y_ = tf.placeholder(tf.float32,[None,output_node],name="y_output") #input-->layer1 w_1 = tf.Variable(tf.truncted_normal([input_node,L1_node],stdev=0.5)) b_1 = tf.V…
lstm.py # -*- coding: utf-8 -*- """ Simple example using LSTM recurrent neural network to classify IMDB sentiment dataset. References: - Long Short Term Memory, Sepp Hochreiter & Jurgen Schmidhuber, Neural Computation 9(8): 1735-1780, 1…
Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 MacOS 或者 Linux 上运行无阻碍. 今天来对比学习一下用 Keras 搭建下面几个常用神经网络: 回归 RNN回归 分类 CNN分类 RNN分类 自编码分类 它们的步骤差不多是一样的: [导入模块并创建数据] [建立模型] [定义优化器] [激活模型] [训练模型] [检验模型] [可视化结果…