每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging News」,本期 Hugging News 有哪些有趣的消息,快来看看吧! 社区活动 百姓 x Hugging Face ️ 黑客松结果揭晓! 为期两天的「造个 ️ 去瀛海威广场」聊天机器人黑客松已经落下帷幕,demo day 展示回放视频正在剪辑制作,经过激烈投票,各种小机器人儿们的「头衔」已经定下,…
本文将展示如何在 Habana Gaudi2 上使用 Optimum Habana.Optimum Habana 是 Gaudi2 和 Transformers 库之间的桥梁.本文设计并实现了一个大模型推理基准测试,证明了通过使用 Optimum Habana 你将能够在 Gaudi2 上获得 比目前市面上任何可用的 GPU 都快的推理速度. 随着模型越来越大,将它们部署到生产环境中以用于推理也变得越来越具有挑战性.硬件和软件都需要很多创新来应对这些挑战,让我们来深入了解 Optimum Hab…
阅读目录 0)Render Performance 1)Understanding Overdraw 2)Understanding VSYNC 3)Tool:Profile GPU Rendering 4)Why 60fps? 5)Android, UI and the GPU 6)Invalidations, Layouts, and Performance 7)Overdraw, Cliprect, QuickReject 8)Memory Churn and performance 9)…
2015年伊始,Google发布了关于Android性能优化典范的专题, 一共16个短视频,每个3-5分钟,帮助开发者创建更快更优秀的Android App.课程专题不仅仅介绍了Android系统中有关性能问题的底层工作原理,同时也介绍了如何通过工具来找出性能问题以及提升性能的建议.主要从三个 方面展开,Android的渲染机制,内存与GC,电量优化.下面是对这些问题和建议的总结梳理. 0)Render Performance 大多数用户感知到的卡顿等性能问题的最主要根源都是因为渲染性能.从设计…
2015年伊始,Google发布了关于Android性能优化典范的专题,一共16个短视频,每个3-5分钟,帮助开发者创建更快更优秀的Android App.课程专题不仅仅介绍了Android系统中有关性能问题的底层工作原理,同时也介绍了如何通过工具来找出性能问题以及提升性能的建议.主要从三个方面展开,Android的渲染机制,内存与GC,电量优化.下面是对这些问题和建议的总结梳理. 0)Render Performance 大多数用户感知到的卡顿等性能问题的最主要根源都是因为渲染性能.从设计师的…
Google发布机器学习平台Tensorflow游乐场-带你玩神经网络 原文地址:http://f.dataguru.cn/article-9324-1.html> 摘要: 昨天,Google发布了Tensorflow游乐场.Tensorflow是Google今年推出的机器学习开源平台.而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理.今 ... 网络 工具 机器学习 神经网络 Tensorflow 昨天,Google发…
2015年伊始,Google发布了关于Android性能优化典范的专题, 一共16个短视频,每个3-5分钟,帮助开发者创建更快更优秀的Android App.课程专题不仅仅介绍了Android系统中有关性能问题的底层工作原理,同时也介绍了如何通过工具来找出性能问题以及提升性能的建议.主要从三个 方面展开,Android的渲染机制,内存与GC,电量优化.下面是对这些问题和建议的总结梳理. 0)Render Performance 大多数用户感知到的卡顿等性能问题的最主要根源都是因为渲染性能.从设计…
2015年伊始,Google发布了关于Android性能优化典范的专题, 一共16个短视频,每个3-5分钟,帮助开发者创建更快更优秀的Android  App.课程专题不仅仅介绍了Android系统中有关性能问题的底层工作原理,同时也介绍了如何通过工具来找出性能问题以及提升性能的建议.主要从三个 方面展开,Android的渲染机制,内存与GC,电量优化.下面是对这些问题和建议的总结梳理. 0)Render Performance 大多数用户感知到的卡顿等性能问题的最主要根源都是因为渲染性能.从设…
OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿.130亿.330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络的性能,70亿意味着神经网络中有70亿个参数,由此类推. 在一些大型神经网络中,每个参数需要使用32位或64位浮点数进行存储,这意味着每个参数需要占用4字节或8字节的存储空间.因此,对于包含70亿个参…
在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 FLAN-T5 XXL 模型.在此过程中,我们会使用到 Hugging Face 的 Transformers.Accelerate 和 PEFT 库. 通过本文,你会学到: 如何搭建开发环境 如何加载并准备数据集 如何使用 LoRA 和 bnb (即 bitsandbytes) int-8 微调 T…