cdq分治 基础篇】的更多相关文章

题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数. 分析 关于cdq分治第一篇学习笔记可以戳一下右边:[传送门] 简单的cdq分治,我不会树套树,所以就用cdq分治来做一下. 很明显的是,有答案贡献的都是\(time[i]<time[j]\)且\(val[i]<val[j]\)且\(pos[i]>pos[j]\). 以及\(time[…
作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作结果的修改操作在序列中一定会在这一个查询操作前面 \(2.\)将这一段序列分为左右两半,递归解决左右两半的子问题 \(3.\)考虑左半部分的修改操作对右半部分的查询操作的贡献 CDQ分治的基本思想就是在分治的过程中统计左半部分对右半部分的影响 上面的过程可能比较抽象,举个栗子:归并排序求逆序对 别告…
花儿们已经很累了-- 无论是花形.颜色.还是气味, 都不是为了给人们摆出来欣赏的, 更不是为了当做出题的素材的, 她们并不想自己这些属性被没有生命的数字量化, 并不想和其它的花攀比, 并无意分出个三六九等, 它们只想静静地开放, 完成自己这一生的使命, 而你(出题人)考虑过这些吗? 不,你只关心你自己! 题目的传送门会有的,先不要着急... 首先来看一道大水题. 给定\(n\)个元组\((x)\), 询问对于每个元组\(i\), 有多少个元组\(j\)满足\(x_i<x_j\). (一维偏序)…
前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基本思想和实现都很简单,但是因为没有人给本蒟蒻详讲,所以我对着几篇论文头疼了一个下午,最终在menci和sxysxy大佬的帮助下学会了CDQ分治.本文介绍一些非常simple的CDQ分治问题,目的在于帮助新手更快地入门CDQ分治,希望对大家有帮助. 转载请注明作者:__stdcall. 基本思想 CD…
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #define maxn 200001 using namespace std; typedef long long ll; ll ans[maxn],Ans; int n,m,tot,tsum[maxn],num[maxn],pos[maxn],sum[ma…
最近学了一种叫做CDQ分治的东西...用于离线处理一系列操作与查询似乎跑得很快233 CDQ的名称似乎源于金牌选手陈丹琦 概述: 对于一坨操作和询问,分成两半,单独处理左半边和处理左半边对于右半边的影响,就叫$CDQ$分治. 乍一看似乎不算难理解...? 这"一坨操作和询问"是要求靠左的操作可以影响所有右侧操作,靠右的查询的值依赖于左侧的操作... 内部实现: 将左右区间按一定规律排序后分开处理,递归到底时直接计算答案,对于一个区间,按照第二关键字split成两个区间,先处理左区间,之…
[前言] 作为一个什么数据结构都不会只会CDQ分治和分块的蒟蒻,面对区间加&区间求和这么难的问题,怎么可能会写线段树呢 于是,用CDQ分治解决区间加&区间求和这篇习作应运而生 [Part.I]区间加&区间求和的数据结构做法 [一]线段树 裸题... 1141ms #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include…
组合数学真是太棒了 $CDQ$真是太棒了(雾 参考资料: 1.<组合数学> 2.论文 课件 很容易查到 3.sro __stdcall 偏序关系 关系: 集合$X$上的关系是$X$与$X$的笛卡尔积$X \times X$的子集$R$即$X$的元素的有序对集合的一个子集属于$X \times X$的有序对$(a,b)$记为$aRb$ $R$的一些概念:自反$: \ \forall x \in X,\ xRx$对称$: \ \forall x,y \in X,\ xRy \rightarrow…
[BZOJ4237]稻草人(CDQ分治,单调栈) 题面 BZOJ 题解 \(CDQ\)分治好题呀 假设固定一个左下角的点 那么,我们可以找到的右下角长什么样子??? 发现什么? 在右侧是一个单调递减的东西 那么,对于每一个已经固定好的左下角 我们可以通过单调栈来维护答案 既然只有左下角对右上角会产生贡献 那么,按照\(x\)轴排序之后可以\(CDQ\)分治 \(CDQ\)分治怎么搞? 如果在上面的基础上多了几个点.. 那几根棕色的线链接的连是不能贡献答案的 我们来看看: 这些点的\(y\)轴都在…
A.\(CDQ\) 分治 特别基础的教程略. \(CDQ\)分治的优缺点: ( 1 )优点:代码量少,常数极小,可以降低处理维数. ( 2 )缺点:必须离线处理. \(CDQ\)分治与其他分治最本质的不同在于: 分治到达\([L,R]\)时,分治处理\([L,mid]\)与\([mid+1,R]\) 然后递归上来合并的时候: 只考虑 [L,mid]中元素 对 [mid+1,R] 中元素的影响 看起来这句话非常简单,但只要正真理解了这句话,也就理解了\(CDQ\)分治. 只要是满足这个原则的分治,…