内容范围如题.Lec 08-11的内容:https://www.youtube.com/watch?v=Qa04kw1gKHk&index=36&list=PLQiVpyxVlLkbpeXN-HvANQf-txsqjlAeL From: http://blog.sina.com.cn/s/blog_461db08c0101jv5j.html 几个要点: 关于变量消减的顺序,其思想可以参考算法中的矩阵相乘的顺序对计算效率的影响,采用动态规划法. 8 Inference: Variable E…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
前言: 这次实验完成的是图模型的精确推理.exact inference分为2种,求边缘概率和求MAP,分别对应sum-product和max-sum算法.这次实验涉及到的知识点很多,不仅需要熟悉图模型的representation,而且还需明白图模型的inference理论,大家可参考coursera课程:Probabilistic Graphical Models的课件和视频.多花点功夫去理解每行代码,无形之中会收获不少.新年第一篇博客,继续加油! 算法流程: Sum-product求条件概…
一 课程基本信息 本课程是由Prof.Daphne Koller主讲,同时得到了Prof. Kevin Murphy的支持,在coursera上公开传播.在本课程中,你将学习到PGM(Probabilistic Graphical Models)表示的基本理论,以及如何利用人类自身的知识和机器学习技术来构建PGM:还将学习到使用PGM算法来对有限.带噪声的证据提取结论,在不确定条件下做出正确的抉择.该课程不仅包含PGM框架的理论基础,还有将这些技术应用于新问题的实际技巧. 本课程包含以下主题:…
前言: 这次练习完成的是图模型的近似推理,参考的内容是coursera课程:Probabilistic Graphical Models . 上次实验PGM练习四:图模型的精确推理 中介绍的是图模型的精确推理,但在大多数graph上,其精确推理是NP-hard的,所以有必要采用计算上可行的近似推理.本实验中的近似推理分为2个部分,LBP(loop belief propagation算法)和MCMC采样.实验code可参考:实验code可参考网友的:code. 算法流程: LBP(loop be…
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建模和求解.然而,我们会发现,使用概率分布的图形表示进行分析很有好处.这种概率分布的图形表示被称为概率图模型( probabilistic graphical models ).这些模型提供了几个有用的性质:• 它们提供了一种简单的方式将概率模型的结构可视化,可以用于设计新的模型.• 通过观察图形,我…
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概率模型与计算机视觉”林达华美国麻省理工学院(MIT)博士   上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project: “link a camera to a computer and get the c…
原文:http://dongguo.me/blog/2014/01/01/expectation-propagation/ 简介 第一次接触EP是10年在百度实习时,当时组里面正有计划把线上的CTR预估模型改成支持增量更新的版本,读到了微软一篇基于baysian的CTR预估模型的文章(见推荐阅读5),文章中没有给出推导的细节,自己也没有继续研究.今年在PRML中读Approximal inference这章对EP有了一些了解,同时参考了其它相关的一些资料,在这里和大家探讨. 什么是期望传播 期望…
本文的主题是“贝叶斯网络”(Bayesian Network) 贝叶斯网络是一个典型的图模型,它对感兴趣变量(variables of interest)及变量之间的关系(relationships)进行建模.当将贝叶斯模型与统计技术一起使用时,这种图模型分析数据具有如下几个优势: (1)    贝叶斯学习能够方便的处理不完全数据.例如考虑具有相关关系的多个输入变量的分类或回归问题,对标准的监督学习算法而言,变量间的相关性并不是它们处理的关键因素,当这些变量中有某个缺值时,它们的预测结果就会出现…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
在前三周的作业中,我构造了概率图模型并调用第三方的求解器对器进行了求解,最终获得了每个随机变量的分布(有向图),最大后验分布(双向图).本周作业的主要内容就是自行编写概率图模型的求解器.实际上,从根本上来说求解器并不是必要的.其作用只是求取边缘分布或者MAP,在得到联合CPD后,寻找联合CPD的最大值即可获得MAP,对每个变量进行边缘分布求取即可获得边缘分布.但是,这种简单粗暴的方法效率极其低下,对于MAP求取而言,每次得到新的evidance时都要重新搜索CPD,对于单个变量分布而言,更是对每…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
有个比较有意思的想法是编码理论的反问题是 machine learning,这也是这部分学习的一个收获.这个其实很奇怪,编码理论其实是有 ground truth 的,然后通过编码产生“冗余”,这样才能通过含有噪声的信道后仍然能够被正确的解码(比较好的是相关的理论上界和最优编码已经非常接近了),这个问题的本质其实也是 inference.那为什么我说 machine learning 是它的反问题呢?我们通常会假定数据本身具有“结构”,尽管我们看到的数据是来自某个高维的空间,但是往往有某些内在的…
这部分讨论 MAP 估计.从某个角度上来说,我们可以将这个问题转换成为前面讨论过的: 这样一来我们只需要将原先的 sum-product 换成 max-sum 即可.话虽这么说,我们还是看看 Koller 同学给大家准备了些什么东西. 首先是一些复杂性方面的结论,如给定一个 BN 和常数 ,问是否存在 .这个 decision 问题(BN-MAP-DP)是 NP-hard 的,这导致 marginal 版本也是 NP-hard 的,事实上 marginal 版本在某种意义上更难一些,即是 -co…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系列来自Stanford公开课Probabilistic Graphical Model中Daphne Koller 老师的讲解.(https://class.coursera.org/pgm-2012-002/class/index) 主要内容包括(转载请注明原始出处http://blog.csdn…
Infer.NET机器学习翻译系列文章将进行连载,感兴趣的朋友请收藏或关注             本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html 微软Infer.NET机器学习组件文章目录:http://www.cnblogs.com/asxinyu/p/4329742.html 关于本文档的说明 本文档基于Infer.NET 2.6对Infer.NET User Guide进行中文翻译,但进行了若干简化和提炼,按照原网站…
计算机视觉与模式识别代码合集第二版three     Topic Name Reference code Optical Flow Horn and Schunck's Optical Flow   code Optical Flow Black and Anandan's Optical Flow   code Pose Estimation Training Deformable Models for Localization Ramanan, D. "Learning to Parse I…
下面就开始讲讲概率图中的Factor Graph.概率图博大精深,非我等鼠辈能够完全掌握,我只是通过研究一些通用的模型,对概率图了解了一点皮毛.其实我只是从概率这头神兽身上盲人摸象地抓掉几根毛,我打算就讲讲我抓掉这几根毛. Factor Graph 是概率图的一种,概率图有很多种,最常见的就是Bayesian Network (贝叶斯网络)和Markov Random Fields(马尔可夫随机场).在概率图中,求某个变量的边缘分布是常见的问题.这问题有很多求解方法,其中之一就是可以把Bayes…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SIFT Library] [VLFeat]   PCA-SIFT [2] [Project]   Affine-SIFT [3] [Project]   SURF [4] [OpenSURF] [Matlab Wrapper]   Affine Covariant Features [5] [Oxfo…
参考链接1: 参考链接2: 参考ppt3: Factor Graph 是概率图的一种,概率图有很多种,最常见的就是Bayesian Network (贝叶斯网络)和Markov Random Fields(马尔可夫随机场).在概率图中,求某个变量的边缘分布是常见的问题.这问题有很多求解方法,其中之一就是可以把Bayesian Network和Markov Random Fields 转换成Facor Graph,然后用sum-product算法求解. 基于Factor Graph可以用sum-p…
和 Koller 的 video 最大的不同莫过于书上讲 LBP 的角度不是 procedural 的,而是原理性的.我们先看个 procedural 的,在一般的 cluster graph 上的 BP 改进版即 loopy belief propagation 先将所有的 message 初始化为 1,然后依照原先的策略进行消息传递,直到收敛为止.这里面收敛很可能不是所有的消息都能收敛,同时传递消息的顺序一般比较 tricky,过去认为有效的同步传递方式已经被搞清楚很多情况下不能收敛到合理的…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
独立(Independence) 统计独立(Statistical Independence) 两个随机变量X,Y统计独立的条件是当且仅当其联合概率分布等于边际概率分布之积: \[ X \perp Y \leftrightarrow P(X,Y)=P(Y) P(Y) \] 思考:假设 \(X \perp Y\),\(Y \perp Z\),那么 \(X\) 和 \(Y\) 有没有独立关系呢? 举例:爸吃饭,奥巴马吃饭,妈吃饭 条件独立(Conditional Independence) 两个随机…
from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SIFT Library] [VLFeat]   PCA-SIFT [2] [Project]   Affine-SIFT [3] [Project]   SURF [4] [OpenSURF] [Matlab Wrapper]   Affine Covariant Features [5] [O…
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse(http://www.cs.toronto.edu/~rgrosse/) Intended for: beginning machine learning researchers, practitioners Bayesian statistics is a branch of statistics…
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 18. Image Stitching图像拼接,另一个相关的词是Panoramic.在Computer Vision: Algorithms and Applications一书中,有专门一章是讨论这个问题.这里的两面文章一篇是综述,一篇是这方面很经典的文章.[20…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
这篇blog,原来是西弗吉利亚大学的Li xin整理的,CV代码相当的全,不知道要经过多长时间的积累才会有这么丰富的资源,在此谢谢LI Xin .我现在分享给大家,希望可以共同进步!还有,我需要说一下,不管你的理论有多么漂亮,不管你有多聪明,如果没有实验来证明,那么都是错误的.  OK~本博文未经允许,禁止转载哦!  By  wei shen Reproducible Research in Computational Science “It doesn't matter how beautif…